Cobalt-Induced Hypercontraction is Mediated by Generationof Reactive Oxygen Species and Influx of Calcium in Isolated RatAorta


To investigate the mechanism of cobalt-mediated phenylephrine (PE)-induced contraction in endothelium-intact isolated Wistar rat aortic rings. Effect of dose-dependent concentrations of cobalt on PE-induced contraction was investigated in isolated Wistar rat aortic rings using an organ bath system. Aortic rings were pre-incubated with verapamil (1 μM and 20 μM), gadolinium, apocynin, indomethacin or N-G-nitro-l-arginine methyl ester (L-NAME) separately before incubation with cobalt. Endothelium-intact aortic rings were incubated with 800 nM, 1 μM, 10 μM, 50 μM cobalt; we observed 20%, 22%, 32% and 27% increased contractions respectively, while no effect was seen in tension recording on cobalt exposure. Incubation of endothelium-intact aortic rings with 100 μM apocynin and 100 μM L-NAME suggested the role of NADPH oxidase in generation of reactive oxygen species (ROS) and decrease in bioavailability of nitric oxide (NO) from eNOS on exposure to cobalt. Aortic rings pre-incubated with 1 μM and 20 μM verapamil suggested role of both L-type and T-type calcium channels in influx of extracellular calcium in smooth muscle cells. We observed no role of store-operated calcium channels (SOCC) in calcium influx due to cobalt exposure and cyclooxygenase in generation of prostanoids in isolated aortic rings. Cobalt caused rise of PE-induced contractions as a result of the endothelial generation of ROS, by decreasing bioavailability of NO. Generation of ROS may be responsible for causing the influx of extracellular calcium through L-type and T-type Ca2+ channels in smooth muscle cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    O’ Leary F, Samman S (2012) Vitamin B12 in health and disease. Nutrients 2(3):299–316

    Article  Google Scholar 

  2. 2.

    Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals. Academic Press

  3. 3.

    Kumagai S, Kusaka Y, Goto S (1996) Cobalt exposure level and variability in the hard metal industry of Japan. Am Ind Hyg Assoc 57(4):365–369

    CAS  Article  Google Scholar 

  4. 4.

    Polyzois I, Nikolopoulos D, Michos I, Patsouris E, Theocharis S (2012) Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty. J Appl Toxicol 32(4):255–269

    CAS  Article  Google Scholar 

  5. 5.

    Sampson B, Hart A (2012) Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants. Ann Clin Biochem 49(2):118–131

    CAS  Article  Google Scholar 

  6. 6.

    Ichikawa Y, Kusaka Y, Goto S (1985) Biological monitoring of cobalt exposure, based on cobalt concentrations in blood and urine. Int Arch Occup Environ Health 55(4):269–276

    CAS  Article  Google Scholar 

  7. 7.

    Mohiuddin SM, Taskar PK, Rheault M, Roy P-E, Chenard J, Morin Y (1970) Experimental cobalt cardiomyopathy. Am Heart J 80(4):532–543

    CAS  Article  Google Scholar 

  8. 8.

    toxnet Accessed 2 May 2018

  9. 9.

    Edel J, Pozzi G, Sabbioni E, Pietra R, Devos S (1994) Metabolic and toxicological studies on cobalt. Sci Total Environ 150(1–3):233–244

    CAS  Article  Google Scholar 

  10. 10.

    Shibata S, Kurahashi K, Kuchii M (1973) A possible etiology of contractility impairment of vascular smooth muscle from spontaneously hypertensive rats. J Pharmacol Exp Ther 185(2):406–417

    CAS  PubMed  Google Scholar 

  11. 11.

    Bohr DF (1974) Reactivity of vascular smooth muscle from normal and hypertensive rats: effect of several cations. Fed Proc 33:127

    CAS  PubMed  Google Scholar 

  12. 12.

    Gallagher MJ, Alade PI, Dominiczak AF, Bohr DF (1994) Cobalt contraction of vascular smooth muscle is calcium dependent. J Cardiovasc Pharmacol 24(2):293–297

    CAS  Article  Google Scholar 

  13. 13.

    Seong Y, Kim E, Park T-G, Seok Y, Baek W, Kim S-O, Lim DG, Yang DH, Kim I (2005) Endothelial dysfunction after exposure to cobalt chloride enhanced vascular contractility. Environ Toxicol Pharmacol 20(2):297–304

    CAS  Article  Google Scholar 

  14. 14.

    Kawahara Y, Tanonaka K, Daicho T, Nawa M, Oikawa R, Nasa Y, Takeo S (2005) Preferable anesthetic conditions for echocardiographic determination of murine cardiac function. J Pharmacol Sci 99(1):95–104

    CAS  Article  Google Scholar 

  15. 15.

    Shabir H, Kundu S, Basir SF, Khan LA (2014) Modulation of Pb (II) caused aortal constriction by eugenol and carvacrol. Biol Trace Elem Res 161(1):116–122

    CAS  Article  Google Scholar 

  16. 16.

    Guevara I, Iwanejko J, Dembinska-kiec A, Pankiewicz J, Wanat A, Anna P, lwona G, Bartus S, Malczewska-Malec M, Szczudlik A (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274(2):177–188

    CAS  Article  Google Scholar 

  17. 17.

    Rapp JP (1982) A genetic locus (Hyp-2) controlling vascular smooth muscle response in spontaneously hypertensive rats. Hypertension 4(4):459–467

    CAS  Article  Google Scholar 

  18. 18.

    Kundu S, Shabir H, Basir SF, Khan LA (2014) Inhibition of As (III) and Hg (II) caused aortic hypercontraction by eugenol, linalool and carvone. J Smooth Muscle Res 50:93–102

    CAS  Article  Google Scholar 

  19. 19.

    Leonard S, Gannett PM, Rojanasakul Y, Schwegler-Berry D, Castranova V, Vallyathan V, Shi X (1998) Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70(3–4):239–244

    CAS  Article  Google Scholar 

  20. 20.

    Chachami G, Simos G, Hatziefthimiou A, Bonanou S, Molyvdas P-A, Paraskeva E (2004) Cobalt induces hypoxia-inducible factor-1α expression in airway smooth muscle cells by a reactive oxygen species–and PI3K-dependent mechanism. Am J Respir Cell Mol Biol 31(5):544–551

    CAS  Article  Google Scholar 

  21. 21.

    Taggart MJ, Wray S (1998) Hypoxia and smooth muscle function: key regulatory events during metabolic stress. J Physiol 509(2):315–325

    CAS  Article  Google Scholar 

  22. 22.

    Shimizu S, Bowman PS, Thorne G, Paul RJ (2000) Effects of hypoxia on isometric force, intracellular Ca2+, pH, and energetics in porcine coronary artery. Circ Res 86(8):862–870

    CAS  Article  Google Scholar 

  23. 23.

    Ahn B-H, Park MH, Lee YH, Kwon TK (2007) Up-regulation of cyclooxygenase-2 by cobalt chloride-induced hypoxia is mediated by phospholipase D isozymes in human astroglioma cells. Biochim Biophys Acta 1773(12):1721–1731

    CAS  Article  Google Scholar 

  24. 24.

    Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268:12231–12234

    CAS  PubMed  Google Scholar 

  25. 25.

    Raman CS, Li H, Martasek P, Kral V, Masters BS, Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase:a paradigm for pterin function involving a novel metal center. Cell 95:939–950

    CAS  Article  Google Scholar 

  26. 26.

    Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273:25804–25808

    CAS  Article  Google Scholar 

  27. 27.

    Moncada S, Rees DD, Schulz R, Palmer RM (1991) Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci 88(6):2166–2170

    CAS  Article  Google Scholar 

  28. 28.

    Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320(6061):454–456

    CAS  Article  Google Scholar 

  29. 29.

    Macarthur H, Westfall TC, Wilken GH (2008) Oxidative stress attenuates NO-induced modulation of sympathetic neurotransmission in the mesenteric arterial bed of spontaneously hypertensive rats. Am J Phys Heart Circ Phys 294(1):H183–H189

    CAS  Google Scholar 

  30. 30.

    Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Phys Heart Circ Phys 250(5):H822–H827

    CAS  Google Scholar 

  31. 31.

    Shimizu K, Kaneda T, Chihara H, Kaburagi T, Nakajyo S, Urakawa N (1995) Effects of phenylephrine on the contractile tension and cytosolic Ca2+ level in rat anococcygeus muscle. J Smooth Muscle Res 31:163–174

    CAS  Article  Google Scholar 

  32. 32.

    Pillai S, Bikle DD (1992) Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation. J Cell Physiol 151(3):623–629

    CAS  Article  Google Scholar 

  33. 33.

    Ok S-H, Kwon S-C, Kang S, Choi M-J, Sohn J-T (2014) Mepivacaine-induced intracellular calcium increase appears to be mediated primarily by calcium influx in rat aorta without endothelium. Korean J Anesthesiol 67(6):404–411

    CAS  Article  Google Scholar 

  34. 34.

    Caldwell RA, Clemo HF, Baumgarten CM (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am J Phys Cell Phys 275(2):C619–C621

    CAS  Article  Google Scholar 

  35. 35.

    Wani SA, Khan LA, Basir SF (2018) Role of calcium channels and endothelial factors in nickel induced aortic hypercontraction in Wistar rats. J Smooth Muscle Res 54:71–82

    CAS  Article  Google Scholar 

  36. 36.

    Tabet F, Savoia C, Schiffrin EL, Touyz RM (2004) Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 44(2):200–208

    CAS  Article  Google Scholar 

  37. 37.

    Zimmerman MC, Takapoo M, Jagadeesha DK, Stanic B, Banfi B, Bhalla RC, Miller FJ Jr (2011) Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells. Hypertension 58(3):446–453

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seemi Farhat Basir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wani, S.A., Khan, L.A. & Basir, S.F. Cobalt-Induced Hypercontraction is Mediated by Generationof Reactive Oxygen Species and Influx of Calcium in Isolated RatAorta. Biol Trace Elem Res 196, 110–118 (2020).

Download citation


  • Cobalt
  • Vasocontraction
  • Reactive oxygen species
  • Calcium channels
  • Nitric oxide