Effect of Farm Additives on the Potential Bioavailability of Some Nutritional Elements from Kenyan Wild Plants

Abstract

In this study, the effects of farm additives on eight wild plants from Nyamira County, Kenya were evaluated for their release of iron, copper, calcium, potassium and magnesium. A hundred and sixty traditional medicinal practitioners were surveyed and found to use Solanum indicum, Carissa edulis, Urtica dioica, Clerodendrum myricoides, Aloe vera, Plectranthus barbatus, Bidens pilosa and Solanum mauense. Atomic absorption spectrophotometer was used to determine the total nutritional element contents in the plants while ultra filtration and physiologically based extraction tests were used to determine the release and solubility of the nutritional elements. The plants from areas with high use of farm additives were found to have statistically significant high total levels of copper from the area with no or little application. Elemental analysis of the molecular species fractions into < 3 kDa, 3–10 kDa, 10 kDa–0.45 μm and 0.45–5 μm mass fractions showed that the mass distribution of the elements in the plants depended on the element. The nutritional elements released by gastrointestinal digestion were more than those released aquatically. Farm additives had no significant effect on the levels of most nutritional elements determined and the plants can be used as mineral element supplements in the human body in addition to their therapeutic activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sitienei K, Home PG, Kamau DM, Wanyoko JK (2013) Nitrogen and potassium dynamics in tea cultivation as influenced by fertilizer type and application rates. Am J Plant Sci 4(1):59–65

    CAS  Google Scholar 

  2. 2.

    Phuntsho S, Shon HK, Majeed T (2012) Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environ Sci Technol 46(8):4567–4575

    CAS  PubMed  Google Scholar 

  3. 3.

    Pacheco C, Calouro F, Vieira S (2008) Influence of nitrogen and potassium on yield, fruit quality and mineral composition of kiwifruit. Energy Environ 2:517–521

    Google Scholar 

  4. 4.

    Ogundijo DS, Adetunji MT, Azeez JO, Arowolo TA, Olla NO, Adekunle AF (2015) Influence of organic and inorganic fertilizers on soil chemical properties and nutrient changes in an Alfisol of South Western Nigeria. Int J Plant Soil Sci 7(6):329–337

    Google Scholar 

  5. 5.

    Owuor PO, Otieno CO, Kamau DM, Wanyoko JK (2011) Effects of long-term fertilizer use on a high-yielding tea clone AHPS15/10: soil pH, mature leaf nitrogen, mature leaf and soil phosphorus and potassium. Int J Tea Sci 8(1):15–51

    Google Scholar 

  6. 6.

    Virk SS, Mullenix DK, Sharda A (2013) Case study: distribution uniformity of a blended fertilizer applied using a variable-rate spinner-disc spreader. Appl Eng Agric 29(5):627–636

    Google Scholar 

  7. 7.

    Roy RN, Finck A, Blair GJ, Tandon HLS (2006) Plant nutrition for food security. A guide for integrated nutrient management, vol. 16 of FAO Fertilizer and Plant Nutrition Bulletin, Food and Agriculture Organization of the United Nations, Rome, Italy

  8. 8.

    Tshivhandekano I, Mudau FN, Soundy P, Ngezimana W (2013) Effect of cultural practices and environmental conditions on yield and quality of herbal plants: prospects leading to research on influence of nitrogen fertilization, planting density and eco-physiological parameters on yield and quality of field-grown bush tea (Athrixia phylicoides DC.). J Med Plants Res 7(34):2489–2493

    Google Scholar 

  9. 9.

    Duflo E, Kremer M, Robinson J (2008) How high are rates of return to fertilizer? Evidence from field experiments in Kenya. Am Econ Rev 98(2):482–488

    Google Scholar 

  10. 10.

    Takahashi S, Anwar MR (2007) Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an andosol. Field Crop Res 101(2):160–171

    Google Scholar 

  11. 11.

    Tonitto C, Ricker-Gilbert JE (2016) Nutrient management in African sorghum cropping systems: applying meta-analysis to assess yield and profitability. Agron Sustain Dev 36(1):1–19

    CAS  Google Scholar 

  12. 12.

    Huskisson E, Maggini S, Ruf M (2007) The role of vitamins and minerals in energy metabolism and well being. J Int Med Res 35:277–289

    CAS  PubMed  Google Scholar 

  13. 13.

    Staubli Asobayire F, Adou P, Hurrel T (2005) Prevalence of iron deficiency with and without concurrent anaemia in population groups with high prevalence of malaria and other infection: a study in Cote d'Ivoire. Am J Clin Nutr 74:776–784

    Google Scholar 

  14. 14.

    De Benoist B, McLean E, Egli I, Cogswell M (2008) Worldwide prevalence of anaemia 1993–2005- WHO Global Database on Anaemia. WHO-CDC: 48

  15. 15.

    Ogbe RJ, Adoga GI, Abu AH (2010) Antianaemic potentials of some plant extracts on phenyl hydrazine-induced anaemia in rabbits. J Med Plant Res 4:680–684

    Google Scholar 

  16. 16.

    Adedapo A, Jimoh F, Afolayan A (2011) Comparison of the nutritive value and biological activities of the acetone, methanol, and water extracts of the leaves of Bidens pilosa and Chenopodium album. Acta Pol Pharm Drug Res 68:83–92

    Google Scholar 

  17. 17.

    Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    CAS  PubMed  Google Scholar 

  18. 18.

    Bo S, Pisau E (2008) Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr Opin Lipidol 19:50–56

    CAS  PubMed  Google Scholar 

  19. 19.

    Killilea DW, Maier JAM (2008) A connection between magnesium deficiency and aging: new insights from cellular studies. Magnes Res 21:77–82

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Intawongse M, Dean JR (2008) Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environ Pollut 152:60–72

    CAS  PubMed  Google Scholar 

  21. 21.

    Morgan KT (2008) Nutritional determinants of bone health. J Nutr Elder 27:3–27

    PubMed  Google Scholar 

  22. 22.

    Williams FH (2008) Neuromuscular complications of nutritional deficiencies. Phys Med Rehabil Clin N Am 19:125–148

    PubMed  Google Scholar 

  23. 23.

    Theobald H (2005) Dietary calcium and health. Nutr Bull 30:237–277

    Google Scholar 

  24. 24.

    Pele LC, Thoree V, Mustafa F, He S, Tsaprouni L, Punchard NA, Thompson RPH, Evans SM, Powell JJ (2007) Low dietary calcium modulate mucosal capase expression and increase disease activity in mice with dextran sulfate sodium-induced colitis. J Nutr 137:2475–2480

    CAS  PubMed  Google Scholar 

  25. 25.

    Navaro P, Arana G, Etxebarria N, Dean JR (2008) Evaluation of the physiologically based extraction test as an indicator of meat toxicity in mussel tissue. Anal Chim Acta 622:126–132

    Google Scholar 

  26. 26.

    Ko EA, Han J, Jung ID, Park WS (2008) Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44:65–81

    PubMed  Google Scholar 

  27. 27.

    Lambert IH, Hoffmann EK, Pedersen SF (2008) Cell volume regulation: physiology and pathophysiology. Acta Physiol 194:255–282

    CAS  Google Scholar 

  28. 28.

    Sobotka L, Allison S, Stanga Z (2008) Basics in clinical nutrition: physiological function and deficiency states of trace elements. e-SPEN 3:259–266

    Google Scholar 

  29. 29.

    Guerrero-Romero F, Rodriguez-Moran M (2005) Complementary therapies for diabetes: the case for chromium, magnesium and antioxidants. Arch Med Res 36:250–257

    CAS  PubMed  Google Scholar 

  30. 30.

    Lipkin M, Newark HL (1999) Vitamin D, calcium and prevention of breast cancer: a review. J Am Coll Nutr 18:392S–397S

    CAS  PubMed  Google Scholar 

  31. 31.

    Nischwitz V, Mogwasi R, Zor S, Kariuki DK, Getenga ZM (2017) A first comprehensive study total and hot water extractable fractions of selected elements in 19 medicinal plants from various locations in Nyamira County (Kenya). J Trace Elem Med Biol 39:54–61

    CAS  PubMed  Google Scholar 

  32. 32.

    Mogwasi R, Zor S, Kariuki DK, Getenga ZM, Nischwitz V (2018) Sequential extraction as a novel approach to compare 12 medicinal plants from Kenya regarding their potential to release chromium, manganese, zinc and copper. Biol Trace Elem Res 182(2):407–422

    CAS  PubMed  Google Scholar 

  33. 33.

    Ugwuja EI, Ugwu NC, Aloke C, Idenyi JN, Nwibo AN, Ibiam UA, Ezenkwa US (2012) Effects of glycaemic status on plasma levels of calcium, chromium, copper, iron, magnesium, selenium and zinc in diabetic rats. Int J Diabetes Res 1:92–95

    Google Scholar 

  34. 34.

    Mogwasi R, Kariuki DK, Getenga MZ, Nischwitz V (2019) Comparison of aqueous and enzymatic extraction combination with sequential filtration for the profiling of selected trace elements in medicinal plants from Kenya. J Trace Elem Med Biol 54:1–7

    CAS  PubMed  Google Scholar 

  35. 35.

    Anitha E, Praveena V, Babu NGR, Manasa P (2013) Enumeration of foliar fertilizer efficiency in India’s top commercial crop-tea. Int J Innov Res Sci Eng Technol 2(12) ISN 2319-8753

  36. 36.

    Grimm-Wetzel P, Schonherr J (2007) Applications of calcium chloride to apple fruits increase calcium and reduce potassium concentration in peripheral layers of fruits. Erwerbs-Obstbau 49:75–83

    Google Scholar 

  37. 37.

    Val J, Monge E, Risco D, Blanco A (2008) Effect of pre-harvest calcium sprays on calcium concentrations in the skin and flesh of apples. J Plant Nutr 31:1889–1905

    CAS  Google Scholar 

  38. 38.

    Majolagbe AO, Kuteyi V, Onwordi CT, Yusuf KA (2013) Concentration and bioavailability of iron in some selected blood-building medicinal plants in Southwest Nigeria. J Environ 2:19–24

    Google Scholar 

  39. 39.

    Kiprono KP, Wanyoko JK, Kamau DM, Chepng’eno W (2010) Economics of nitrogen fertilizer use in tea. Tea 31(2):36–43

    Google Scholar 

  40. 40.

    Alikwe NCP, Ohimain IE, Omotosho MS (2014) Evaluation of the proximate, mineral, phytochemical and amino acid composition of Bidens pilosa as a potential feed/feed additive for non-ruminant livestock. Anim Vet Sci 2:18–21

    Google Scholar 

  41. 41.

    Adongo OS, Murungi J, Wanjau R, Ndegwa F (2012) Determination of the concentrations of zinc, magnesium and iron in some medicinal plants used by the Chuka community in Kenya. J Sci Technol 1:1–7

    Google Scholar 

  42. 42.

    Magili ST, Maina HM, Barminas JT, Maitera ON, Onen AI (2014) Study of some trace and macro elements in selected medicinal plants used in Adamawa State, Nigeria by neutron activation analysis (NAA). Peak J Med Plants Res 2(2):13–22

    Google Scholar 

  43. 43.

    Mussie S, Kareru P, Keriko J, Girmay B, Medhanie G, Semere D (2016) Profile of trace elements in selected medicinal plants used for the treatment of diabetes in Eritrea. Sci World J 2752836:1–7

    Google Scholar 

  44. 44.

    Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop production. Adv Agron 88:97–105

    CAS  Google Scholar 

  45. 45.

    Taylor DJ, Green NPO, Stout GW (1998) Biological science, 3rd edn. Cambridge university press, UK, pp 216–220 and 672-698

    Google Scholar 

  46. 46.

    Cadkova Z, Szakova J, Miholova D, Horakova B, Kopecky O, Krivska D, Langrova I, Tlustos P (2015) Bioaccessibilty versus bioavailability of essential (Cu, Fe, Mn and Zn) and toxic (Pb) elements from phyto hyperaccumulator Pistia stratiotes: potential risk of dietary intake. J Agric Food Chem 63:2344–2354

    CAS  PubMed  Google Scholar 

  47. 47.

    Murray-Kolbe LE, Beard J (2010) Iron. In: Coates PM, Betz JM, Blackman MR et al (eds) Encyclopedia of dietary supplements, 2nd edn. Inform Healthcare, London and New York, pp 432–438

    Google Scholar 

  48. 48.

    Wessling RM (2014) Iron. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler RG (eds) Modern nutrition in health and disease, 11th edn. Lippincott Williams & Wilkins, Baltimore, pp 176–188

    Google Scholar 

  49. 49.

    Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Piero NM, Njagi MJ, Kibiti MC, Maina D, Ngeranwa JNJ, Njagi NME, Njue MW, Gathumbi KP (2012) Trace elements content of selected Kenyan antidiabetic medicinal plants. Int J Curr Pharm Res 4:39–42

    CAS  Google Scholar 

  51. 51.

    Fernandez-Garcia E, Carvajal-Lerida I, Perez-Galvez A (2009) Invitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res 29:751–760

    CAS  PubMed  Google Scholar 

  52. 52.

    Li SX, Deng NS (2004) Speciation analysis of iron in traditional Chinese medicine by flame atomic absorption spectrometry. J Pharm Biomed Anal 32:51–57

    Google Scholar 

  53. 53.

    Ramos A, Cabrera MC, Saadoun A (2012) Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci 91:116–124

    CAS  PubMed  Google Scholar 

  54. 54.

    Omolo OJ, Chahabra SC, Nyagah G (1997) Determination of iron content in different parts of herbs used traditionally for anaemia treatment in East Africa. J Ethnopharmacol 58:97–102

    CAS  PubMed  Google Scholar 

  55. 55.

    Muregi FW, Chhabra SC, Njagi ENM, Langat-Thoruwa CC, Njue WM, Orago ASS, Omar SA, Ndiege IO (2004) Anti-plasmodial activity of some Kenyan medicinal plant extracts singly and in combination with chloroquine. Phytother Res 18:379–384

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance given by Mr. Ephantus Mwangi and Ms. Marion, the Nairobi University Chemistry Department Technicians in carrying out the analytical work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Mogwasi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 597 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mogwasi, R., Kariuki, D.K. & Getenga, Z.M. Effect of Farm Additives on the Potential Bioavailability of Some Nutritional Elements from Kenyan Wild Plants. Biol Trace Elem Res 195, 658–668 (2020). https://doi.org/10.1007/s12011-019-01855-8

Download citation

Keywords

  • Agricultural activities
  • Anaemia
  • Bioavailability
  • Fractionation
  • Nyamira