Skip to main content

Advertisement

Log in

Serum and Seminal Plasma Element Concentrations in Relation to Semen Quality in Duroc Boars

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Element concentrations in serum and seminal plasma were studied in Duroc boars with different semen quality characteristics. Based on the utilization rate of 2174 ejaculates from June to August in 2016, a total of 166 Duroc boars were allocated into three groups: low utilization rate group (LG, 0 to 60% utilization rate), medium utilization rate group (MG, 60 to 80%), and high utilization rate group (HG, 80 to 100%). Serum and seminal plasma samples were collected, and element levels were analyzed using inductively coupled plasma mass spectrometry. The results showed that LG boars had higher concentrations of serum copper and seminal plasma cadmium compared with MG and HG boars (P < 0.05), and serum copper and seminal plasma cadmium were negatively correlated with sperm motility, while positively correlated with the abnormal sperm rate. We observed the abnormal sperm rate increased by approximately 4.53% with serum copper increasing from 1.63 to 2.44 mg/L, while sperm motility decreased by approximately 2.85% with seminal plasma cadmium increasing from 0 to 0.82 μg/L. Moreover, serum iron and manganese levels in the LG group were significantly reduced compared with the HG boars (P < 0.05), and the two elements were negatively correlated with the abnormal sperm rate (P < 0.05). In conclusion, excessive copper and absence of iron and manganese in serum as well as higher seminal plasma cadmium may reduce the utilization rate of semen by impairing sperm motility and morphology, indicating the importance of adding and monitoring microelements in boar diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsakmakidis IA, Lymberopoulos AG, Khalifa TA (2010) Relationship between sperm quality traits and field–fertility of porcine semen. J Vet Sci 11:151–154. https://doi.org/10.4142/jvs.2010.11.2.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Broekhuijse ML, Šoštarić E, Feitsma H, Gadella BM (2012) The value of microscopic semen motility assessment at collection for a commercial artificial insemination center, a retrospective study on factors explaining variation in pig fertility. Theriogenology 77:1466–1479. https://doi.org/10.1016/j.theriogenology.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  3. Wong WY, Flik G, Groenen PMW, Swinkels DW, Thomas CMG, Copius-Peereboom JHJ, Merkus HMWM, Steegers-Theunissen RPM (2001) The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 15:131–136. https://doi.org/10.1016/s0890-6238(01)00113-7

    Article  CAS  PubMed  Google Scholar 

  4. Pesch S, Bergmann M, Bostedt H (2006) Determination of some enzymes and macro– and microelements in stallion seminal plasma and their correlations to semen quality. Theriogenology 66:307–313. https://doi.org/10.1016/j.theriogenology.2005.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Villaverde AI, Fioratti EG, Ramos RS et al (2014) Blood and seminal plasma concentrations of selenium, zinc and testosterone and their relationship to sperm quality and testicular biometry in domestic cats. Anim Reprod Sci 150:50–55. https://doi.org/10.1016/j.anireprosci.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  6. Knazicka Z, Tvrda E, Bardos L, Lukac N (2012) Dose- and time-dependent effect of copper ions on the viability of bull spermatozoa in different media. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1294–1300. https://doi.org/10.1080/10934529.2012.672135

    Article  CAS  PubMed  Google Scholar 

  7. Pipan MZ, Mrkun J, Strajn BJ, Vrtač KP, Kos J, Pišlar A, Zrimšek P (2017) The influence of macro– and microelements in seminal plasma on diluted boar sperm quality. Acta Vet Scand 59:11. https://doi.org/10.1186/s13028-017-0279-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. García–Contreras A, De LY, Garcíaartiga C et al (2011) Elevated dietary intake of Zn–methionate is associated with increased sperm DNA fragmentation in the boar. Reprod Toxicol 31:570–573. https://doi.org/10.1016/j.reprotox.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  9. Rodríguez AL, Rijsselaere T, Beek J et al (2013) Boar seminal plasma components and their relation with semen quality. Syst Biol Reprod Med 59:5–12. https://doi.org/10.3109/19396368.2012.725120

    Article  CAS  Google Scholar 

  10. Ahmad SAWG (1999) Effects of lead on the male reproductive system in mice. J Toxicol Environ Health J Toxicol Environ Health Part A 56:513–521. https://doi.org/10.1080/009841099157953

    Article  Google Scholar 

  11. Monsefi M, Alaee S, Moradshahi A, Rohani L (2010) Cadmium-induced infertility in male mice. Environ Toxicol 25:94–102. https://doi.org/10.1002/tox.20468

    Article  CAS  PubMed  Google Scholar 

  12. Pant N, Kumar G, Upadhyay AD, Gupta YK, Chaturvedi PK (2015) Correlation between lead and cadmium concentration and semen quality. Andrologia 47:887–891. https://doi.org/10.1111/and.12342

    Article  CAS  PubMed  Google Scholar 

  13. Li C, Zhao K, Zhang H, Liu L, Xiong F, Wang K, Chen B (2018) Lead exposure reduces sperm quality and DNA integrity in mice. Environ Toxicol 33:594–602. https://doi.org/10.1002/tox.22545

    Article  CAS  PubMed  Google Scholar 

  14. Telisman S, Cvitković P, Jurasović J, Pizent A, Gavella M, Rocić B (2000) Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect 108:45–53. https://doi.org/10.2307/3454294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao L, Ru Y, Liu M, Tang JN, Zheng JF, Wu B, Gu YH, Shi HJ (2017) Reproductive effects of cadmium on sperm function and early embryonic development in vitro. PLoS One 12:e0186727. https://doi.org/10.1371/journal.pone.0186727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tvrdá E, Kňažická Z, Lukáčová J, Schneidgenová M, Goc Z, Greń A, Szabó C, Massányi P, Lukáč N (2013) The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. Environ Lett 48(10):1292–1300. https://doi.org/10.1080/10934529.2013.777243

    Article  CAS  Google Scholar 

  17. Pant N, Upadhyay G, Pandey S, Mathur N, Saxena DK, Srivastava SP (2003) Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol 17(4):447–450. https://doi.org/10.1016/s0890-6238(03)00036-4

    Article  CAS  PubMed  Google Scholar 

  18. Massányi P, Trandzík J, Nad P et al (2003) Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality. Environ Lett 38:2643–2651. https://doi.org/10.1081/ESE-120024453

    Article  CAS  Google Scholar 

  19. BilandžIc´ N, Sedak M, Vrataric´ D, Peric’T, Šimic’B (2009) Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia. Sci Total Environ 407:4243–4247. https://doi.org/10.1016/j.scitotenv.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Li JL, Wei HK, Zhou YF, Tan JJ, Sun HQ, Jiang SW, Peng J (2016) Effects of feeding regimen on weight gain, semen characteristics, libido, and lameness in 170– to 250–kilogram Duroc boars. J Anim Sci 94:4666–4676. https://doi.org/10.2527/jas2016-0803

    Article  CAS  PubMed  Google Scholar 

  21. Beorlegui N, Cetica P, Trinchero G, Córdoba M, Beconi M (1997) Comparative study of functional and biochemical parameters in frozen bovine sperm. Andrologia 29:37–42. https://doi.org/10.1111/j.1439-0272.1997.tb03146.x

    Article  CAS  PubMed  Google Scholar 

  22. Kozink DM, Estienne MJ, Harper AF, Knight JW (2004) Effects of dietary L–carnitine supplementation on semen characteristics in boars. Theriogenology 61:1247–1258. https://doi.org/10.1016/j.theriogenology.2003.07.022

    Article  CAS  PubMed  Google Scholar 

  23. Shipley CF (1999) Breeding soundness examination of the boar. J Swine Health Prod 7:117–120

    Google Scholar 

  24. Smital J, De Sousa LL, Mohsen A (2004) Differences among breeds and manifestation of heterosis in AI boar sperm output. Anim Reprod Sci 80:121–130. https://doi.org/10.1016/S0378-4320(03)00142-8

    Article  CAS  PubMed  Google Scholar 

  25. Wolf J, Smital J (2009) Quantification of factors affecting semen traits in artificial insemination boars from animal model analyses. J Anim Sci 87:1620–1627. https://doi.org/10.2527/jas.2008-1373

    Article  CAS  PubMed  Google Scholar 

  26. Aguiar GF, Batista BL, Rodrigues JL et al (2012) Determination of trace elements in bovine semen samples by inductively coupled plasma mass spectrometry and data mining techniques for identification of bovine class. J Dairy Sci 95:7066–7073. https://doi.org/10.3168/jds.2012-5515

    Article  CAS  PubMed  Google Scholar 

  27. Uriuadams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26:268–298. https://doi.org/10.1016/j.mam.2005.07.015

    Article  CAS  Google Scholar 

  28. Massányi P, Trandzik J, Nad P et al (2004) Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa. Environ Lett 39:3005–3014. https://doi.org/10.1081/LESA-200034832

    Article  Google Scholar 

  29. Gamik P, Bre J, Vrzgula L, Mesáko P (1990) Effect of experimental intoxication with copper from industrial emission on reproductive ability in rams. Reprod Domest Anim 25:235–241. https://doi.org/10.1111/j.1439-0531.1990.tb00466.x

    Article  Google Scholar 

  30. Mesaros P, Cigankova V, Valocka I et al (2005) Zinc and copper concentration in the blood serum of boars after the administration of Zindep inj. A.U.V. Folia Vet 49(4):193–197

    Google Scholar 

  31. Olivari FA, Hernández PP, Allende ML (2009) Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res 1244:1–12. https://doi.org/10.1016/j.brainres.2008.09.050

    Article  CAS  Google Scholar 

  32. Tvrdá E, Lukáč N, Schneidgenová M, Lukáčová J, Szabó C, Goc Z, Greń A, Massányi P (2013) Impact of seminal chemical elements on the oxidative balance in bovine seminal plasma and spermatozoa. J Vet Med 2013(2013–9–9):1–8. https://doi.org/10.1155/2013/125096

    Article  CAS  Google Scholar 

  33. Li YY, Wu JQ, Wei Y, Zhou WJ, Gao ES (2008) Are serum zinc and copper levels related to semen quality? Fertil Steril 89:1008–1011. https://doi.org/10.1016/j.fertnstert.2007.04.028

    Article  Google Scholar 

  34. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Asp Med 22:1–87. https://doi.org/10.1016/S0098-2997(00)00006-6

    Article  CAS  Google Scholar 

  35. Wise T, Lunstra DD, Rohrer GA, Ford JJ (2003) Relationships of testicular iron and ferritin concentrations with testicular weight and sperm production in boars. J Anim Sci 81:503–511

    Article  CAS  PubMed  Google Scholar 

  36. Mudron P, Baumgartner W, Kovac G, Bartko P, Jr RI, Zezula I (1996) Effects of iron and vitamin E administration on some immunological parameters in pigs. DTW Dtsch Tierarztl Wochenschr 103:131–133

    CAS  PubMed  Google Scholar 

  37. Lapointe S, Ahmad I, Buhr MM, Lambert RD, Sirard MA (1996) Modulation of postthaw motility, survival, calcium uptake, and fertility of bovine sperm by magnesium and manganese. J Dairy Sci 79:2163–2169. https://doi.org/10.3168/jds.S0022-0302(96)76591-8

    Article  CAS  PubMed  Google Scholar 

  38. Pine M, Lee B, Dearth R, Hiney JK, Dees WL (2005) Manganese acts centrally to stimulate luteinizing hormone secretion: a potential influence on female pubertal development. Toxicol Sci 85:880–885. https://doi.org/10.1093/toxsci/kfi134

    Article  PubMed  Google Scholar 

  39. Chang EC, Kosman DJ (1989) Intracellular Mn (II)–associated superoxide scavenging activity protects Cu, Zn superoxide dismutase–deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264:12172–12178

    CAS  PubMed  Google Scholar 

  40. Maringuzman J, Mahan DC, Whitmoyer R (2000) Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility. J Anim Sci 78:1544–1550

    Article  CAS  Google Scholar 

  41. Jurasović J, Cvitković P, Pizent A, Colak B, Telisman S (2004) Semen quality and reproductive endocrine function with regard to blood cadmium in Croatian male subjects. Biometals 17:735–743. https://doi.org/10.1007/s10534-004-1689-7

    Article  PubMed  Google Scholar 

  42. Mendiola J, Moreno JM, Roca M, Vergara-Juárez N, Martínez-García MJ, García-Sánchez A, Elvira-Rendueles B, Moreno-Grau S, López-Espín JJ, ten J, Bernabeu R, Torres-Cantero AM (2011) Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environ Health–Glob 10:6. https://doi.org/10.1186/1476-069X-10-6

    Article  CAS  Google Scholar 

  43. Slivkova J, Popelkova M, Massanyi P, Toporcerova S, Stawarz R, Formicki G, Lukac N, Putała A, Guzik M (2009) Concentration of trace elements in human semen and relation to spermatozoa quality. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:370–375. https://doi.org/10.1080/10934520802659729

    Article  CAS  PubMed  Google Scholar 

  44. Guzikowski W, Szynkowska MI, Motakpochrzęst H, Pawlaczyk A, Sypniewski S (2015) Trace elements in seminal plasma of men from infertile couples. Arch Med Sci 11:591–598. https://doi.org/10.5114/aoms.2015.52363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Migliarini B, Campisi AM, Maradonna F, Truzzi C, Annibaldi A, Scarponi G, Carnevali O (2005) Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger. Gen Comp Endocrinol 142:241–247. https://doi.org/10.1016/j.ygcen.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Xu T, Lei W, Liu D, Li Y, Xuan R, Ma J (2011) Cadmium–induced oxidative stress and apoptotic changes in the testis of freshwater crab, Sinopotamon henanense. Pols One 6:e27853. https://doi.org/10.1371/journal.pone.0027853

    Article  CAS  Google Scholar 

  47. Kuo HW, Wang CS, Lai JS (1997) Semen quality in workers with long–term lead exposure: a preliminary study in Taiwan. Sci Total Environ 204:289–292. https://doi.org/10.1016/S0048-9697(97)00181-2

    Article  PubMed  Google Scholar 

  48. Hernández–Ochoa I, García–Vargas G, López–Carrillo L et al (2005) Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol 20:221–228. https://doi.org/10.1016/j.reprotox.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  49. Wu HM, Lintan DT, Wang ML et al (2012) Lead level in seminal plasma may affect semen quality for men without occupational exposure to lead. Reprod Biol Endocrinol 10:1–5. https://doi.org/10.1186/1477-7827-10-91

    Article  CAS  Google Scholar 

  50. Xu DX, Shen HM, Zhu QX, Chua L, Wang QN, Chia SE, Ong CN (2003) The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res 534:155–163. https://doi.org/10.1016/S1383-5718(02)00274-7

    Article  CAS  PubMed  Google Scholar 

  51. Breitbart H (2002) Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol 187(1–2):139–144. https://doi.org/10.1016/S0303-7207(01)00704-3

    Article  CAS  PubMed  Google Scholar 

  52. Liu Z, Chen L, Shang Y, Huang P, Miao L (2013) The micronutrient element zinc modulates sperm activation through the SPE–8 pathway in Caenorhabditis elegans. Development 140:2103–2107. https://doi.org/10.1242/dev.091025

    Article  CAS  PubMed  Google Scholar 

  53. Asghari A, Akbari G, Galustanian G (2016) Magnesium sulfate improves sperm characteristics against varicocele in rat. Crescent J Med Biol Sci 2:37–41

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Research and Development Project of China (2017YFD0502004) and China Agriculture Research System (CARS–36). Ying-hui Wu and Jian Peng designed the study.

Author information

Authors and Affiliations

Authors

Contributions

Zi-hui Liu and Sheng-qing Li offered detecting instrument for determined of element levels, and Jia-jian Tan and Hai-qing Sun offered conditions for boar evaluation at YangXiang Joint Stock Company. All authors contributed to analysis, interpretation of the result, and writing of the article. Jian Peng had primary responsibility for the final content.

Corresponding author

Correspondence to Jian Peng.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest. All authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the journal.

Ethics Approval

All animal handling protocols were approved by the Animal Care and Use Committee of the College of Animal Science and Technology, Huazhong Agricultural University (approval permit number HZAUSW-2016-011), and were conducted in accordance with the National Research Council’s Guide for the Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yh., Lai, W., Liu, Zh. et al. Serum and Seminal Plasma Element Concentrations in Relation to Semen Quality in Duroc Boars. Biol Trace Elem Res 189, 85–94 (2019). https://doi.org/10.1007/s12011-018-1459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1459-y

Keywords

Navigation