Skip to main content

Advertisement

Log in

Arsenic-Induced Neurotoxicity by Dysfunctioning Cholinergic and Dopaminergic System in Brain of Developing Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic exposure to arsenic via drinking water throughout the globe is assumed to cause a developmental neurotoxicity. Here, we investigated the effect of perinatal arsenic exposure on the neurobehavioral and neurochemical changes in the corpus striatum, frontal cortex, and hippocampus that is critically involved in motor and cognition functions. In continuation of previous studies, this study demonstrates that perinatal exposures (GD6–PD21) to arsenic (2 or 4 mg/kg body weight, p.o.) cause hypo-activity in arsenic-exposed rats on PD22. The hypo-activity was found to be linked with a decrease in the mRNA and protein expression of the DA-D2 receptor. Further, a protein expression of tyrosine hydroxylase (TH), levels of dopamine, and its metabolites were also significantly impaired in corpus striatum. The arsenic-exposed groups showed spatial learning and memory significantly below the average in a dose-dependent manner for the controls. Here, we evaluated the declined expression of CHRM2 receptor gene and protein expression of ChAT, PKCβ-1 in the frontal cortex and hippocampus, which are critically involved in cognition functions including learning and memory. A trend of recovery was found in the cholinergic and dopaminergic system of the brain, but changes remained persisted even after the withdrawal of arsenic exposure on PD45. Taken together, our results indicate that perinatal arsenic exposure appears to be critical and vulnerable as the development of cholinergic and dopaminergic system continues during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal S, Bhatnagar P, Flora SJ (2015) Changes in tissue oxidative stress, brain biogenic amines and acetylcholinesterase following co-exposure to lead, arsenic and mercury in rats. Food Chem Toxicol 86:208–216

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed S, Mahabbat-e Khoda S, Rekha RS, Gardner RM, Ameer SS, Moore S, Ekström EC, Vahter M, Raqib R (2011) Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect 119:258–264

    Article  CAS  PubMed  Google Scholar 

  3. Ali N, Hoque MA, Haque A, Salam KA, Karim MR, Rahman A, Islam K, Saud ZA, Khalek MA, Akhand AA, Hossain M, Mandal A, Karim MR, Miyataka H, Himeno S, Hossain K (2010) Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health 10:9–36

    Google Scholar 

  4. Altman J, Sudarshan K (1975) Postnatal development of locomotion in the laboratory rat. Anim Behav 23:896–920

    Article  CAS  PubMed  Google Scholar 

  5. Aung KH, Kyi-Tha-Thu C, Sano K, Nakamura K, Tanoue A, Nohara K, Kakeyama M, Tohyama C, Tsukahara S, Maekawa F (2016) Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice. Front Neurosci 10:137

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ballentine R, Burford DD (1957) Determination of metals. Methods Enzymol 3:1002–1035

    Article  Google Scholar 

  7. Bardullas U, Limón-Pacheco JH, Giordano M, Carrizales L, Mendoza-Trejo MS, Rodríguez VM (2009) Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicol Appl Pharmacol 239:169–177

    Article  CAS  PubMed  Google Scholar 

  8. Bashir S, Sharma Y, Irshad M, Nag TC, Tiwari M, Kabra M, Dogra TD (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology 217:63–70

    Article  CAS  PubMed  Google Scholar 

  9. Brinkel J, Khan MH, Kraemer A (2009) Systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6:1609–1619

    Article  PubMed  PubMed Central  Google Scholar 

  10. Caldwell KE, Labrecque MT, Solomon BR, Ali A, Allan AM (2015) Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development. Neurotoxicol Teratol 47:66–79

    Article  CAS  PubMed  Google Scholar 

  11. Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK (2014a) Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 34:60–75

    Article  CAS  PubMed  Google Scholar 

  12. Chandravanshi LP, Shukla RK, Sultana S, Pant AB, Khanna VK (2014b) Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 38:91–104

    Article  CAS  PubMed  Google Scholar 

  13. Chandravanshi LP, Gupta R, Shukla RK (2018 Mar 3) Developmental neurotoxicity of arsenic: involvement of oxidative stress and mitochondrial functions. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1286-1

  14. Chen Y, Graziano JH, Parvez F, Liu M, Slavkovich V, Kalra T, Argos M, Islam T, Ahmed A, Rakibuz-Zaman M (2011) Arsenic exposure from drinking water andmortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342:d2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhar P, Jaitley M, Kalaivani M, Mehra RD (2005) Preliminary morphological and histochemical changes in rat spinal cord neurons following arsenic ingestion. Neurotoxicology 26:309–320

    Article  CAS  PubMed  Google Scholar 

  16. Duker AA, Carranza EJ, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  CAS  PubMed  Google Scholar 

  17. Dwivedi N, Flora SJ (2011) Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats. Food Chem Toxicol 49:1152–1159

    Article  CAS  PubMed  Google Scholar 

  18. Eisenegger C, Naef M, Linssen A, Clark L, Gandamaneni PK, Müller U, Robbins TW (2014) Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology 39:2366–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellman GL, Courtney KD, Andres VJ, Feather-Stone RM (1961) A new and rapid calorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  20. Fängström B, Moore S, Nermell B, Kuenstl L, Goessler W, Grandér M, Kabir I, Palm B, Arifeen SE, Vahter M (2008) Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environ Health Perspect 116:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farag AT, Goda NF, Shaaban NA, Mansee AH (2007) Effects of oral exposure of synthetic pyrethroid, cypermethrin on the behavior of F1-progeny in mice. Reprod Toxicol 23:560–567

    Article  CAS  Google Scholar 

  22. Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Arch Neurol 61:641–644

    Article  PubMed  Google Scholar 

  23. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13:655–659

    Article  CAS  PubMed  Google Scholar 

  24. Gong G, O'Bryant SE (2010) The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord 24:311–316

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez-Cortes T, Recio-Vega R, Lantz RC, Chau BT (2017) DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic. Toxicol Appl Pharmacol 329:140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM (2015) A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int J Environ Res Public Health 12:4587–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirner AV, Rettenmeier AW (2010) Methylated metal(loid) species in humans. Met Ions Life Sci 7:465-521

  28. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishii K, Itoh Y, Iwasaki N, Shibata Y, Tamaoka A (2014) Detection of diphenylarsinic acid and its derivatives in human serum and cerebrospinal fluid. Clin Chim Acta 431:227–231

    Article  CAS  PubMed  Google Scholar 

  30. Itoh T, Zhang YF, Murai S, Saito H, Nagahama H, Miyate H, Saito Y, Abe E (1990) The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice. Toxicol Lett 54:345–353

    Article  CAS  PubMed  Google Scholar 

  31. Jin Y, Xi S, Li X, Lu C, Li G, Xu Y, Qu C, Niu Y, Sun G (2006) Arsenic speciation transported through the placenta from mother mice to their newborn pups. Environ Res 101:349–355

    Article  CAS  PubMed  Google Scholar 

  32. Kamkwalala AR, Newhouse PA (2017) Beyond acetylcholinesterase inhibitors: novel cholinergic treatments for Alzheimer's disease. Curr Alzheimer Res 14:377–392

    CAS  PubMed  Google Scholar 

  33. Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning—a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2399–2428

    Article  CAS  PubMed  Google Scholar 

  34. Kim C, Speisky MB, Kharouba SN (1987) Rapid and sensitive method for measuring norepinephrine, dopamine, 5-hydroxytryptamine and their major metabolites in rat brain by high-performance liquid chromatography. Differential effect of probenecid, haloperidol and yohimbine on the concentrations of biogenic amines and metabolites in various regions of rat brain. J Chromatogr 386:25–35

    Article  CAS  PubMed  Google Scholar 

  35. Kim M, Seo S, Sung K, Kim K (2014) Arsenic exposure in drinking water alters the dopamine system in the brains of C57BL/6 mice. Biol Trace Elem Res 162(1–3):175–180

    Article  CAS  PubMed  Google Scholar 

  36. Kordas K, Ardoino G, Coffman DL, Queirolo EI, Ciccariello D, Mañay N, Ettinger AS (2015) Patterns of exposure to multiple metals and associations with neurodevelopment of preschool children from Montevideo, Uruguay. J Environ Public Health 2015:493471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozul-Horvath CD, Zandbergen F, Jackson BP, Enelow RI, Hamilton JW (2012) Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS One 7:e38249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krinke G (2000) In: Bullock G, Bunton TE (eds) The laboratory rat: a volume in handbook of experimental animals, chapter 12 developmental neurotoxicity. Academic Press, San Diego, p 75

    Google Scholar 

  39. Lazarini CA, Lima RY, Guedes AP, Bernardi MM (2004) Prenatal exposure to dichlorvos: physical and behavioral effects on rat offspring. Neurotoxicol Teratol 26:607–614

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Waalkes MP (2018) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24–32

    Article  CAS  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  42. Luo JH, Qiu ZQ, Shu WQ, Zhang YY, Zhang L, Chen JA (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–125

    Article  CAS  PubMed  Google Scholar 

  43. Luo JH, Qiu ZQ, Zhang L, Shu WQ (2012) Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett 211:39–44

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Finley EJ, Ali AM, Allan AM (2009) Learning deficits in C57BL/6J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol Biochem Behav 94:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maurice T, Su T-P, Parish W, Nabeshima T, Privat A (1994) PRE-084, a sigma selective PCP derivative, attenuates MK-801-induced impairment of learning in mice. Pharmacol Biochem Behav 49:859–869

    Article  CAS  PubMed  Google Scholar 

  46. Mazumdar M (2017) Does arsenic increase the risk of neural tube defects among a highly exposed population? A new case–control study in Bangladesh. Birth Defects Res 109:92–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mejía JJ, Díaz-Barriga F, Calderón J, Ríos C, Jiménez-Capdeville ME (1997) Effects of lead-arsenic combined exposure on central monoaminergic systems. Neurotoxicol Teratol 19:489–497

    Article  PubMed  Google Scholar 

  48. Milton AH, Hussain S, Akter S, Rahman M, Mouly TA, Mitchell K (2017) A review of the effects of chronic arsenic exposure on adverse pregnancy outcomes. Int J Environ Res Public Health 6

  49. Minichilli F, Bianchi F, Ronchi AM, Gorini F, Bustaffa E (2018) Urinary arsenic in human samples from areas characterized by natural or anthropogenic pollution in Italy. Int J Environ Res Public Health 15

  50. Miyauchi M, Kishida I, Suda A, Shiraishi Y, Hattori S, Fujibayashi M, Taguri M, Ishii C, Ishii N, Moritani T, Hirayasu Y (2016) Association of the cholinergic muscarinic M2 receptor with autonomic nervous system activity in patients with schizophrenia on high-dose antipsychotics. Neuropsychobiology 74:60–67

    Article  CAS  PubMed  Google Scholar 

  51. Moreno Ávila CL, Limón-Pacheco JH, Giordano M, Rodríguez VM (2016) Chronic exposure to arsenic in drinking water causes alterations in locomotor activity and decreases striatal mRNA for the D2 dopamine receptor in CD1 male mice. J Toxicol 2016:4763434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Rev Neurother 8:1703–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mukherjee B, Bindhani B, Saha H, Sinha D, Ray MR (2014) Platelet hyperactivity, neurobehavioral symptoms and depression among Indian women chronically exposed to low level of arsenic. Neurotoxicology 45:159–167

    Article  CAS  PubMed  Google Scholar 

  54. Paratcha G, Furman M, Bevilaqua L, Cammarota M, Vianna M, de Stein ML, Izquierdo I, Medina JH (2000) Involvement of hippocampal PKCbeta1 isoform in the early phase of memory formation of an inhibitory avoidance learning. Brain Res 855:199–205

    Article  CAS  PubMed  Google Scholar 

  55. Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, Sultana R, Sultana R, Islam T, Levy D, Mey JL, Van Geen A, Khan K, Kline J, Ahsan H, Graziano JH (2011) Arsenic exposure and motor function among children in Bangladesh. Environ Health Perspect 119:1665–1670

  56. Patlolla AK, Tchounwou PB (2005) Serum acetyl cholinesterase as a biomarker of arsenic induced neurotoxicity in Sprague-Dawley rats. Int J Environ Res Public Health 2:80–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Prakash C, Soni M, Kumar V (2016) Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: a review. J Appl Toxicol 36(2):179–188

    Article  CAS  PubMed  Google Scholar 

  58. Rahman A, Persson LÅ, Nermell B, El Arifeen S, Ekström EC, Smith AH, Vahter M (2010) Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21:797–804

    Article  PubMed  Google Scholar 

  59. Rahman A, Kumarathasan P, Gomes J (2016) Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy. Sci Total Environ 569-570:1022–1031

    Article  CAS  PubMed  Google Scholar 

  60. Rahman A, Granberg C, Persson LA (2017) Early life arsenic exposure, infant and child growth, and morbidity: a systematic review. Arch Toxicol 91:3459–3467

    Article  CAS  PubMed  Google Scholar 

  61. Rodrigues EG, Bellinger DC, Valeri L, Hasan MO, Quamruzzaman Q, Golam M, Kile ML, Christiani DC, Wright RO, Mazumdar M (2016) Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health 15:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodríguez VM, Dufour L, Carrizales L, Díaz-Barriga F, Jiménez-Capdeville ME (1998) Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum. Environ Health Perspect 106:487–491

    PubMed  PubMed Central  Google Scholar 

  63. Rodríguez VM, Limón-Pacheco JH, Carrizales L, Mendoza-Trejo MS, Giordano M (2010) Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat. Neurotoxicol Teratol 32:640–647

    Article  CAS  PubMed  Google Scholar 

  64. Roghani M, Joghataie MT, Jalali MR, Baluchnejadmojarad T (2006) Time course of changes in passive avoidance and Y-maze performance in male diabetic rats. Iran Biomed J J10:99–104

    Google Scholar 

  65. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Del Carmen CM, Cebrian ME, Stoltzfus RJ (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115:1371–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rudge CV, Röllin HB, Nogueira CM, Thomassen Y, Rudge MC, Odland JØ (2009) The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. J Environ Monit 11:1322–1330

    Article  CAS  PubMed  Google Scholar 

  67. Sanders AP, Desrosiers TA, Warren JL, Herring AH, Enright D, Olshan AF, Meyer RE, Fry RC (2014) Association between arsenic, cadmium, manganese, and lead levels in private wells and birth defects prevalence in North Carolina: a semi-ecologic study. BMC Public Health 14:955

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shih YH, Islam T, Hore SK, Sarwar G, Shahriar MH, Yunus M, Graziano JH, Harjes J, Baron JA, Parvez F, Ahsan H, Argos M (2017) Associations between prenatal arsenic exposure with adverse pregnancy outcome and child mortality. Environ Res 158:456–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shohamy D, Adcock RA (2010) Dopamine and adaptive memory. Trends Cogn Sci 14:464–472

    Article  CAS  PubMed  Google Scholar 

  70. Smeester L, Fry RC (2018) Long-term health effects and underlying biological mechanisms of developmental exposure to arsenic. Curr Environ Health Rep 1:134–144

    Article  CAS  Google Scholar 

  71. Soni I, Syed F, Bhatnagar P, Mathur R (2011) Perinatal toxicity of cyfluthrin in mice: developmental and behavioral effects. Hum Exp Toxicol 30:1096–1105

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LK, Dwivedi HN, Pant AB, Khanna VK (2014) Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 279:428–440

    Article  CAS  PubMed  Google Scholar 

  73. Terry AV Jr, Stone JD, Buccafusco JJ, Sickles DW, Sood A, Prendergast MA (2003) Repeated exposure to subthreshhold doses of chlorpyrifos in rats: hippocampal damage, impaired axonal transport and deficits in spatial learning. J Pharmacol Exp Ther 305:375–384

    Article  CAS  PubMed  Google Scholar 

  74. Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80:303–314

    Article  PubMed  Google Scholar 

  75. Tota S, Kamat PK, Awasthi H, Singh N, Raghubir R, Nath C, Hanif K (2009) Candesartan improves memory decline in mice: involvement of AT1 receptors in memory deficit induced by intracerebral streptozotocin. Behav Brain Res 199:235–240

    Article  CAS  PubMed  Google Scholar 

  76. Tseng HP, Wang YH, Wu MM, The HW, Chiou HY, Chen CJ (2006) Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 24:182–189

    PubMed  Google Scholar 

  77. Tyler CR, Allan AM (2013) Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS One 8:e73720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vahter M (2009) Effects of arsenic on maternal and fetal health. Annu Rev Nutr 29:381–399

    Article  CAS  PubMed  Google Scholar 

  79. Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, Kile ML, Quamruzzaman Q, Afroz S, Golam M, Amarasiriwardena C, Bellinger DC, Christiani DC, Coull BA, Wright RO (2017) The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 months of age: evidence from rural Bangladesh. Environ Health Perspect 125:067015

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vathana T, Nijhuis TH, Friedrich PF, Bishop AT, Shin AY (2014) An experimental study to determine and correlate choline acetyltransferase assay with functional muscle testing after nerve injury. J Neurosurg 120:1125–1130

    Article  CAS  PubMed  Google Scholar 

  81. von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A, Hira-Smith M, Ghosh N, Lahiri S, Haque R, Ghosh A, Kalman D, Das S, Smith AH (2007) Children's intellectual function in relation to arsenic exposure. Epidemiology 1:44–51

    Article  Google Scholar 

  82. Vorhees CV, Brunner RL, Butcher RE (1979) Psychotropic drugs as behavioral teratogens. Science 205:1220–1225

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Li W, Li S, Yan J, Wilson JX, Huang G (2017) Maternal folic acid supplementation during pregnancy improves neurobehavioral development in rat offspring. Mol Neurobiol 55:2676–2684. https://doi.org/10.1007/s12035-017-0534-2

    Article  CAS  PubMed  Google Scholar 

  84. WHO (2008) “Guidelines for drinking-water quality, recommendations,” in Incorporating 1st and 2nd Addenda. Vol. 1, 3rd Edn (Geneva: World Health Organization), 306–308b

  85. Willhite CC, Ferm VH (1984) Prenatal and developmental toxicology of arsenicals. Adv Exp Med Biol 177:205–228

    Article  CAS  PubMed  Google Scholar 

  86. Wu J, Song TB, Li YJ, He KS, Ge L, Wang LR (2007) Prenatal restraint stress impairs learning and memory and hippocampal PKCbeta1 expression and translocation in offspring rats. Brain Res 1141:205–213

    Article  CAS  PubMed  Google Scholar 

  87. Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, Pant AB, Khanna VK (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 32:760–768

    Article  CAS  PubMed  Google Scholar 

  88. Zhang J, Liu X, Zhao L, Hu S, Li S, Piao F (2013) Subchronic exposure to arsenic disturbed the biogenic amine neurotransmitter level and the mRNA expression of synthetase in mice brains. Neuroscience 241:52–58

    Article  CAS  PubMed  Google Scholar 

  89. Zhao F, Liao Y, Tang H, Piao J, Wang G, Jin Y (2017) Effects of developmental arsenite exposure on hippocampal synapses in mouse offspring. Metallomics 9:1394–1412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements:

The authors thank the Director of the CSIR–Indian Institute of Toxicology Research (CSIR-IITR), Lucknow for his support and keen interest in the present study. Financial support by the University Grants Commission, New Delhi for carrying out the study is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit P. Chandravanshi.

Ethics declarations

Conflict of Interest

The authors state no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandravanshi, L.P., Gupta, R. & Shukla, R.K. Arsenic-Induced Neurotoxicity by Dysfunctioning Cholinergic and Dopaminergic System in Brain of Developing Rats. Biol Trace Elem Res 189, 118–133 (2019). https://doi.org/10.1007/s12011-018-1452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1452-5

Keywords

Navigation