Skip to main content

Advertisement

Log in

Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis are characterized by a chronic and selective process of neuronal cell death. Although the causes of neurodegenerative diseases remain still unknown, it is now a well-established idea that more factors, such as genetic, endogenous, and environmental, are involved. Among environmental causes, the accumulation of mercury, a heavy metal considered a toxic agent, was largely studied as a probable factor involved in neurodegenerative disease course. Mercury exists in three main forms: elemental mercury, inorganic mercury, and organic mercury (methylmercury and ethylmercury). Sources of elemental mercury can be natural (volcanic emission) or anthropogenic (coal-fired electric utilities, waste combustion, hazardous-waste incinerators, and gold extraction). Moreover, mercury is still used as an antiseptic, as a medical preservative, and as a fungicide. Dental amalgam can emit mercury vapor. Mercury vapor, being highly volatile and lipid soluble, can cross the blood-brain barrier and the lipid cell membranes and can be accumulated into the cells in its inorganic forms. Also, methylmercury can pass through blood-brain and placental barriers, causing serious damage in the central nervous system. This review describes the toxic effects of mercury in cell cultures, in animal models, and in patients with neurodegenerative diseases. In vitro experiments showed that mercury exposure was principally involved in oxidative stress and apoptotic processes. Moreover, motor and cognitive impairment and neural loss have been confirmed in various studies performed in animal models. Finally, observational studies on patients with neurodegenerative diseases showed discordant data about a possible mercury involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Haj M, Roche J, Gallouj K, Gandolphe MC (2017) Autobiographical memory compromise in Alzheimer’s disease: a cognitive and clinical overview. Geriatrie et Psychologie Neuropsychiatrie du Vieillissement 15(4):443–451. https://doi.org/10.1684/pnv.2017.0704

    Article  PubMed  Google Scholar 

  2. Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP (2005) Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurology 65(9):1436–1441. https://doi.org/10.1212/01.wnl.0000183359.50822.f2

    Article  PubMed  Google Scholar 

  3. Yang Y, Tang BS, Guo JF (2016) Parkinson’s disease and cognitive impairment. Park Dis 2016:6734678. https://doi.org/10.1155/2016/6734678

    Article  CAS  Google Scholar 

  4. Raggi A, Covelli V, Schiavolin S, Scaratti C, Leonardi M, Willems M (2016) Work-related problems in multiple sclerosis: a literature review on its associates and determinants. Disabil Rehabil 38(10):936–944. https://doi.org/10.3109/09638288.2015.1070295

    Article  PubMed  Google Scholar 

  5. Tsuang DW, Bird TD (2017) Genetic factors in neurodegenerative diseases. Am J Med Genet Part B, Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet 174(1):3–4. https://doi.org/10.1002/ajmg.b.32504

    Article  Google Scholar 

  6. Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21(2):105–117

    Article  CAS  PubMed  Google Scholar 

  7. Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H (2004) Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuro Endocrinol Lett 25(5):331–339

    CAS  PubMed  Google Scholar 

  8. Allen Reish HE, Standaert DG (2015) Role of alpha-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Park Dis 5(1):1–19. https://doi.org/10.3233/JPD-140491

    Article  CAS  Google Scholar 

  9. Zheng M, Shi Y, Fan D (2013) Nuclear TAR DNA-binding protein 43: a new target for amyotrophic lateral sclerosis treatment. Neural Regen Res 8(35):3284–3295. https://doi.org/10.3969/j.issn.1673-5374.2013.35.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramanan VK, Saykin AJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegenerative Dis 2(3):145–175

    Google Scholar 

  11. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  12. Liang P, Le W (2015) Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci Bull 31(4):435–444. https://doi.org/10.1007/s12264-015-1545-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rivera-Mancia S, Perez-Neri I, Rios C, Tristan-Lopez L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199. https://doi.org/10.1016/j.cbi.2010.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146(8):1041–1059. https://doi.org/10.1038/sj.bjp.0706416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 229:1–18. https://doi.org/10.1007/978-3-319-03777-6_1

    Article  CAS  PubMed  Google Scholar 

  16. Fung YK, Meade AG, Rack EP, Blotcky AJ (1997) Brain mercury in neurodegenerative disorders. J Toxicol Clin Toxicol 35(1):49–54

    Article  CAS  PubMed  Google Scholar 

  17. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662. https://doi.org/10.1080/10408440600845619

    Article  CAS  PubMed  Google Scholar 

  18. Magos L, Clarkson TW (2006) Overview of the clinical toxicity of mercury. Ann Clin Biochem 43:257–268. https://doi.org/10.1258/000456306777695654

    Article  CAS  PubMed  Google Scholar 

  19. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. https://doi.org/10.3109/10408449509089885

    Article  CAS  PubMed  Google Scholar 

  20. Skerfving SB, Copplestone JF (1976) Poisoning caused by the consumption of organomercury-dressed seed in Iraq. Bull World Health Organ 54(1):101–112

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu F, Farkas S, Kortbeek S, Zhang FX, Chen L, Zamponi GW, Syed NI (2012) Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-aspartate receptors. Mol Brain 5:30. https://doi.org/10.1186/1756-6606-5-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SH, Johnson VJ, Sharma RP (2002) Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-kappaB and p38 MAPK signaling pathways. Nitric Oxide Biol Chem 7(1):67–74

    Article  CAS  Google Scholar 

  23. Ortega HG, Lopez M, Takaki A, Huang QH, Arimura A, Salvaggio JE (1997) Neuroimmunological effects of exposure to methylmercury forms in the Sprague-Dawley rats. Activation of the hypothalamic-pituitary-adrenal axis and lymphocyte responsiveness. Toxicol Ind Health 13(1):57–66

    Article  CAS  PubMed  Google Scholar 

  24. Havarinasab S, Bjorn E, Nielsen JB, Hultman P (2007) Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol Appl Pharmacol 221(1):21–28. https://doi.org/10.1016/j.taap.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  25. Kim MK, Zoh KD (2012) Fate and transport of mercury in environmental media and human exposure. J Prev Med Publ Health = Yebang Uihakhoe chi 45(6):335–343. https://doi.org/10.3961/jpmph.2012.45.6.335

    Article  Google Scholar 

  26. Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environ Health: Global Access Sci Source 2(1):8. https://doi.org/10.1186/1476-069X-2-8

    Article  Google Scholar 

  27. Drasch G, Schupp I, Hofl H, Reinke R, Roider G (1994) Mercury burden of human fetal and infant tissues. Eur J Pediatr 153(8):607–610

    Article  CAS  PubMed  Google Scholar 

  28. Murcia M, Ballester F, Enning AM, Iniguez C, Valvi D, Basterrechea M, Rebagliato M, Vioque J, Maruri M, Tardon A, Riano-Galan I, Vrijheid M, Llop S (2016) Prenatal mercury exposure and birth outcomes. Environ Res 151:11–20. https://doi.org/10.1016/j.envres.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  29. Prpic I, Milardovic A, Vlasic-Cicvaric I, Spiric Z, Nisevic JR, Vukelic P, Tratnik JS, Mazej D, Horvat M (2017) Prenatal exposure to low-level methylmercury alters the child’s fine motor skills at the age of 18 months. Environ Res 152:369–374. https://doi.org/10.1016/j.envres.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  30. Castoldi AF, Barni S, Turin I, Gandini C, Manzo L (2000) Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury. J Neurosci Res 59(6):775–787. https://doi.org/10.1002/(Sici)1097-4547(20000315)59:6<775::Aid-Jnr10>3.0.Co;2-T

    Article  CAS  PubMed  Google Scholar 

  31. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360. https://doi.org/10.1016/j.etap.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  32. Azevedo BF, Furieri LB, Pecanha FM, Wiggers GA, Vassallo PF, Simoes MR, Fiorim J, de Batista PR, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Vassallo DV (2012) Toxic effects of mercury on the cardiovascular and central nervous systems J Biomed Biotechnol doi:Artn 949,048 https://doi.org/10.1155/2012/949048

  33. Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clarkson TW, Vyas JB, Ballatorl N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50(10):757–764. https://doi.org/10.1002/ajim.20476

    Article  CAS  PubMed  Google Scholar 

  35. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964. https://doi.org/10.5194/acp-10-5951-2010

    Article  CAS  Google Scholar 

  36. Bose-O’Reilly S, Lettmeier B, Gothe RM, Beinhoff C, Siebert U, Drasch G (2008) Mercury as a serious health hazard for children in gold mining areas. Environ Res 107(1):89–97. https://doi.org/10.1016/j.envres.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  37. Mutter J, Naumann J, Guethlin C (2007) Comments on the article “the toxicology of mercury and its chemical compounds” by Clarkson and Magos (2006). Crit Rev Toxicol 37(6):537–549; discussion 551–532. https://doi.org/10.1080/10408440701385770

    Article  CAS  PubMed  Google Scholar 

  38. Halbach S, Vogt S, Kohler W, Felgenhauer N, Welzl G, Kremers L, Zilker T, Melchart D (2008) Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: interaction of Hg species in erythrocytes. Environ Res 107(1):69–78. https://doi.org/10.1016/j.envres.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  39. Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Publ Health = Yebang Uihakhoe chi 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74

    Article  Google Scholar 

  40. Mutter J, Curth A, Naumann J, Deth R, Walach H (2010) Does inorganic mercury play a role in Alzheimer’s disease? A systematic review and an integrated molecular mechanism. J Alzheim Dis 22(2):357–374. https://doi.org/10.3233/JAD-2010-100,705

    Article  CAS  Google Scholar 

  41. Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156. https://doi.org/10.1016/j.tox.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  42. Fonnum F, Lock EA (2004) The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 88(3):513–531

    Article  CAS  PubMed  Google Scholar 

  43. Albrecht J, Matyja E (1996) Glutamate: a potential mediator of inorganic mercury neurotoxicity. Metab Brain Dis 11(2):175–184

    Article  CAS  PubMed  Google Scholar 

  44. Hunter AM, Brown DL (2000) Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly. Toxicol Appl Pharmacol 166(3):203–213. https://doi.org/10.1006/taap.2000.8953

    Article  CAS  PubMed  Google Scholar 

  45. Huel G, Sahuquillo J, Debotte G, Oury JF, Takser L (2008) Hair mercury negatively correlates with calcium pump activity in human term newborns and their mothers at delivery. Environ Health Perspect 116(2):263–267. https://doi.org/10.1289/ehp.10381

    Article  CAS  PubMed  Google Scholar 

  46. Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89(15–16):555–563. https://doi.org/10.1016/j.lfs.2011.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ralston NV, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278(1):112–123. https://doi.org/10.1016/j.tox.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  48. Farina M, Aschner M, Rocha JB (2011) Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 256(3):405–417. https://doi.org/10.1016/j.taap.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zahir F, Rizvi SJ, Haq SK, Khan RH (2006) Effect of methyl mercury induced free radical stress on nucleic acids and protein: implications on cognitive and motor functions. Indian J Clin Biochem: IJCB 21(2):149–152. https://doi.org/10.1007/BF02912931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  51. Collins Y, Chouchani ET, James AM, Menger KE, Cocheme HM, Murphy MP (2012) Mitochondrial redox signalling at a glance. J Cell Sci 125(4):801–806. https://doi.org/10.1242/jcs.098475

    Article  CAS  PubMed  Google Scholar 

  52. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/Bj20081386

    Article  CAS  PubMed  Google Scholar 

  53. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiol: Off J Int Soc Pathophysiol 7(3):153–163

    Article  CAS  Google Scholar 

  54. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104(1):17–24

    Article  CAS  PubMed  Google Scholar 

  55. Parran DK, Mundy WR, Barone S Jr (2001) Effects of methylmercury and mercuric chloride on differentiation and cell viability in PC12 cells. Toxicoll Sci: Off J Soc Toxicol 59(2):278–290

    Article  CAS  Google Scholar 

  56. Schubert J, Riley EJ, Tyler SA (1978) Combined effects in toxicology—a rapid systematic testing procedure: cadmium, mercury, and lead. J Toxicol Environ Health 4(5–6):763–776. https://doi.org/10.1080/15287397809529698

    Article  CAS  PubMed  Google Scholar 

  57. Papp A, Pecze L, Szabo A, Vezer T (2006) Effects on the central and peripheral nervous activity in rats elicited by acute administration of lead, mercury and manganese, and their combinations. J Appl Toxicol: JAT 26(4):374–380. https://doi.org/10.1002/jat.1152

    Article  CAS  PubMed  Google Scholar 

  58. Haley BE (2005) Mercury toxicity: genetic susceptibility and synergistic effects. Medical Veritas: The Journal of Medical Truth 2:535–542

  59. Balmus IM, Strungaru SA, Ciobica A, Nicoara MN, Dobrin R, Plavan G, Stefanescu C (2017) Preliminary data on the interaction between some biometals and oxidative stress status in mild cognitive impairment and Alzheimer’s disease patients. Oxidative Med Cell Longev 2017:7156928. https://doi.org/10.1155/2017/7156928

    Article  CAS  Google Scholar 

  60. Bjorkblom B, Adilbayeva A, Maple-Grodem J, Piston D, Okvist M, Xu XM, Brede C, Larsen JP, Moller SG (2013) Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. J Biol Chem 288(31):22809–22,820. https://doi.org/10.1074/jbc.M113.482091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu S, Liu J, Wang XD, Shi Z, Zhou Y, Li J, Yu T, Ji Y (2017) Caregiver burden, sleep quality, depression, and anxiety in dementia caregivers: a comparison of frontotemporal lobar degeneration, dementia with Lewy bodies, and Alzheimer’s disease. Int Psychogeriatrics: 1–8. doi:https://doi.org/10.1017/S1041610217002630

  62. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104. https://doi.org/10.1007/s11010-010-0563-x

    Article  CAS  PubMed  Google Scholar 

  63. Crespo AC, Silva B, Marques L, Marcelino E, Maruta C, Costa S, Timoteo A, Vilares A, Couto FS, Faustino P, Correia AP, Verdelho A, Porto G, Guerreiro M, Herrero A, Costa C, de Mendonca A, Costa L, Martins M (2014) Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging 35(4):777–785. https://doi.org/10.1016/j.neurobiolaging.2013.10.078

    Article  CAS  PubMed  Google Scholar 

  64. De Simone U, Caloni F, Gribaldo L, Coccini T (2017) Human co-culture model of neurons and astrocytes to test acute cytotoxicity of neurotoxic compounds. Int J Toxicol 36(6):463–477

    Article  PubMed  Google Scholar 

  65. Lu TH, Hsieh SY, Yen CC, Wu HC, Chen KL, Hung DZ, Chen CH, Wu CC, Su YC, Chen YW, Liu SH, Huang CF (2011) Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol Lett 204(1):71–80. https://doi.org/10.1016/j.toxlet.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  66. Olivieri G, Brack C, Muller-Spahn F, Stahelin HB, Herrmann M, Renard P, Brockhaus M, Hock C (2000) Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 74(1):231–236

    Article  CAS  PubMed  Google Scholar 

  67. Herrmann M, Golombowski S, Krauchi K, Frey P, Mourton-Gilles C, Hulette C, Rosenberg C, Muller-Spahn F, Hock C (1999) ELISA-quantitation of phosphorylated tau protein in the Alzheimer’s disease brain. Eur Neurol 42(4):205–210. https://doi.org/10.1159/000008108

    Article  CAS  PubMed  Google Scholar 

  68. Fujimura M, Usuki F, Sawada M, Takashima A (2009) Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology 30(6):1000–1007. https://doi.org/10.1016/j.neuro.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  69. Gerhardsson L, Lundh T, Minthon L, Londos E (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25(6):508–515. https://doi.org/10.1159/000129365

    Article  CAS  PubMed  Google Scholar 

  70. Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM (1998) Increased blood mercury levels in patients with Alzheimer’s disease. J Neural Transm 105(1):59–68. https://doi.org/10.1007/s007020050038

    Article  CAS  PubMed  Google Scholar 

  71. Giacoppo S, Galuppo M, Calabro RS, D’Aleo G, Marra A, Sessa E, Bua DG, Potorti AG, Dugo G, Bramanti P, Mazzon E (2014) Heavy metals and neurodegenerative diseases: an observational study. Biol Trace Elem Res 161(2):151–160. https://doi.org/10.1007/s12011-014-0094-5

    Article  CAS  PubMed  Google Scholar 

  72. Harris FM, Tesseur I, Brecht WJ, Xu Q, Mullendorff K, Chang S, Wyss-Coray T, Mahley RW, Huang Y (2004) Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer’s disease. J Biol Chem 279(5):3862–3868. https://doi.org/10.1074/jbc.M309475200

    Article  CAS  PubMed  Google Scholar 

  73. Hendrie HC, Murrell J, Baiyewu O, Lane KA, Purnell C, Ogunniyi A, Unverzagt FW, Hall K, Callahan CM, Saykin AJ, Gureje O, Hake A, Foroud T, Gao S (2014) APOE ε4 and the risk for Alzheimer disease and cognitive decline in African Americans and Yoruba. Int Psychogeriatr 26(6):977–985. https://doi.org/10.1017/S1041610214000167

    Article  PubMed  PubMed Central  Google Scholar 

  74. Godfrey ME, Wojcik DP, Krone CA (2003) Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alzheimers Dis 5(3):189–195

    Article  CAS  PubMed  Google Scholar 

  75. Laws SM, Hone E, Gandy S, Martins RN (2003) Expanding the association between the APOE gene and the risk of Alzheimer’s disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 84(6):1215–1236. https://doi.org/10.1046/j.1471-4159.2003.01615.x

    Article  CAS  PubMed  Google Scholar 

  76. Pendergrass JC, Haley BE, Vimy MJ, Winfield SA, Lorscheider FL (1997) Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 18(2):315–324

    CAS  PubMed  Google Scholar 

  77. Morris MC, Brockman J, Schneider JA, Wang Y, Bennett DA, Tangney CC, van de Rest O (2016) Association of seafood consumption, brain mercury level, and APOE ε4 status with brain neuropathology in older adults. JAMA 315(5):489–497. https://doi.org/10.1001/jama.2015.19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee J-Y, Kim J-H, Choi D-W, Lee D-W, Park J-H, Yoon H-J, Pyo H-S, Kwon H-J, Park K-S (2012) The association of heavy metal of blood and serum in the Alzheimer’s diseases. Toxicol Res 28(2):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pamphlett R, Kum Jew S (2015) Different populations of human locus ceruleus neurons contain heavy metals or hyperphosphorylated tau: implications for amyloid-beta and tau pathology in Alzheimer’s disease. J Alzheimers Dis 45(2):437–447

    Article  CAS  PubMed  Google Scholar 

  80. Sun Y-H, Nfor ON, Huang J-Y, Liaw Y-P (2015) Association between dental amalgam fillings and Alzheimer’s disease: a population-based cross-sectional study in Taiwan. Alzheimers Res Ther 7(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  81. Park J-H, Lee D-W, Park KS, Joung H (2014) Serum trace metal levels in Alzheimer’s disease and normal control groups. Am J Alzheimers Dis Other Demen 29(1):76–83

    Article  PubMed  Google Scholar 

  82. Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83(1):84–94. https://doi.org/10.1016/j.ejrad.2013.05.028

    Article  PubMed  Google Scholar 

  83. Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ (2017) PET/MR imaging: new frontier in Alzheimer’s disease and other dementias. Front Mol Neurosci 10:343. https://doi.org/10.3389/fnmol.2017.00343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gallegos S, Pacheco C, Peters C, Opazo CM, Aguayo LG (2015) Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front Neurosci 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  PubMed  Google Scholar 

  86. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. https://doi.org/10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  87. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30. https://doi.org/10.1016/j.arr.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuzis G, Sabe L, Tiberti C, Leiguarda R, Starkstein SE (1997) Cognitive functions in major depression and Parkinson disease. Arch Neurol 54(8):982–986

    Article  CAS  PubMed  Google Scholar 

  89. Goldman SM (2014) Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 54:141–164. https://doi.org/10.1146/annurev-pharmtox-011613-135,937

    Article  CAS  PubMed  Google Scholar 

  90. Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J (2017) Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem. https://doi.org/10.2174/0929867325666171129124616

  91. Bjorklund G (1995) Parkinson disease, mercury and other heavy metals. Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke 115(6):757

    CAS  Google Scholar 

  92. Forte G, Alimonti A, Pino A, Stanzione P, Brescianini S, Brusa L, Sancesario G, Violante N, Bocca B (2005) Metals and oxidative stress in patients with Parkinson’s disease. Annali dell’Istituto Superiore di Sanita 41(2):189–195

    CAS  PubMed  Google Scholar 

  93. Dantzig PI (2006) Parkinson’s disease, macular degeneration and cutaneous signs of mercury toxicity. J Occup Environ Med 48(7):656. https://doi.org/10.1097/01.jom.0000228351.74230.52

    Article  PubMed  Google Scholar 

  94. Miller K, Ochudlo S, Opala G, Smolicha W, Siuda J (2003) Parkinsonism in chronic occupational metallic mercury intoxication. Neurologia Neurochirurgia Polska 37(Suppl 5):31–38

    Google Scholar 

  95. Hsu Y-C, Chang C-W, Lee H-L, Chuang C-C, Chiu H-C, Li W-Y, Horng J-T, Fu E (2016) Association between history of dental amalgam fillings and risk of Parkinson’s disease: a population-based retrospective cohort study in Taiwan. PLoS One 11(12):e0166552

    Article  PubMed  PubMed Central  Google Scholar 

  96. Palacios N, Fitzgerald K, Roberts AL, Hart JE, Weisskopf MG, Schwarzschild MA, Ascherio A, Laden F (2014) A prospective analysis of airborne metal exposures and risk of Parkinson disease in the nurses’ health study cohort. Environ Health Perspect 122(9):933–938. https://doi.org/10.1289/ehp.1307218

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3. https://doi.org/10.1186/1750-1172-4-3

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11(3):251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chio A, Calvo A, Mazzini L, Cantello R, Mora G, Moglia C, Corrado L, D’Alfonso S, Majounie E, Renton A, Pisano F, Ossola I, Brunetti M, Traynor BJ, Restagno G, Parals (2012) Extensive genetics of ALS: a population-based study in Italy. Neurology 79(19):1983–1989. https://doi.org/10.1212/WNL.0b013e3182735d36

    Article  PubMed  PubMed Central  Google Scholar 

  100. Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238. https://doi.org/10.1016/B978-0-12-802,973-2.00013-6

    Article  CAS  PubMed  Google Scholar 

  101. Takeuchi R, Tada M, Shiga A, Toyoshima Y, Konno T, Sato T, Nozaki H, Kato T, Horie M, Shimizu H, Takebayashi H, Onodera O, Nishizawa M, Kakita A, Takahashi H (2016) Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: evidence for clinico-pathologic subtypes. Acta Neuropathologica Commun 4(1):61. https://doi.org/10.1186/s40478-016-0335-2

    Article  CAS  Google Scholar 

  102. Strong MJ, Abrahams S, Goldstein LH, Woolley S, McLaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobaGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR (2017) Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotempl Degen 18(3–4):153–174. https://doi.org/10.1080/21678421.2016.1267768

    Article  Google Scholar 

  103. Henstridge CM, Sideris DI, Carroll E, Rotariu S, Salomonsson S, Tzioras M, McKenzie C-A, Smith C, von Arnim CAF, Ludolph AC, Lule D, Leighton D, Warner J, Cleary E, Newton J, Swingler R, Chandran S, Gillingwater TH, Abrahams S, Spires-Jones TL (2018) Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol 135(2):213–226

    Article  CAS  PubMed  Google Scholar 

  104. Pamphlett R, Kum Jew S (2013) Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis. Acta Neuropathologica Commun 1:13

    Article  Google Scholar 

  105. Chuu J-J, Liu S-H, Lin-Shiau S-Y (2007) Differential neurotoxic effects of methylmercury and mercuric sulfide in rats. Toxicol Lett 169(2):109–120

    Article  CAS  PubMed  Google Scholar 

  106. Praline J, Guennoc AM, Limousin N, Hallak H, de Toffol B, Corcia P (2007) ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg 109(10):880–883. https://doi.org/10.1016/j.clineuro.2007.07.008

    Article  PubMed  Google Scholar 

  107. Mangelsdorf I, Walach H, Mutter J (2017) Healing of amyotrophic lateral sclerosis: a case report. Complement Med Res 24(3):175–181. https://doi.org/10.1159/000477397

    Article  PubMed  Google Scholar 

  108. Kotelnikova E, Kiani NA, Abad E, Martinez-Lapiscina EH, Andorra M, Zubizarreta I, Pulido-Valdeolivas I, Pertsovskaya I, Alexopoulos LG, Olsson T, Martin R, Paul F, Tegner J, Garcia-Ojalvo J, Villoslada P (2017) Dynamics and heterogeneity of brain damage in multiple sclerosis. PLoS Comput Biol 13(10):e1005757. https://doi.org/10.1371/journal.pcbi.1005757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leray E, Moreau T, Fromont A, Edan G (2016) Epidemiology of multiple sclerosis. Rev Neurol 172(1):3–13. https://doi.org/10.1016/j.neurol.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  110. Crabtree-Hartman E (2018) Advanced symptom management in multiple sclerosis. Neurol Clin 36 (1):197-+. https://doi.org/10.1016/j.ncl.2017.08.015

  111. Patsopoulos NA (2018) Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harbor perspectives in medicine doi:https://doi.org/10.1101/cshperspect.a028951

  112. Visconti A, Cotichini R, Cannoni S, Bocca B, Forte G, Ghazaryan A, Santucci S, D’Ippolito C, Stazi MA, Salvetti M, Alimonti A, Ristori G (2005) Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Annali dell’Istituto Superiore di Sanita 41(2):217–222

    CAS  PubMed  Google Scholar 

  113. Attar AM, Kharkhaneh A, Etemadifar M, Keyhanian K, Davoudi V, Saadatnia M (2012) Serum mercury level and multiple sclerosis. Biol Trace Elem Res 146(2):150–153. https://doi.org/10.1007/s12011-011-9239-y

    Article  CAS  PubMed  Google Scholar 

  114. Dulamea AO, Boscaiu V, Sava MM (2015) Disability status and dental pathology in multiple sclerosis patients. Mult Scler Relat Disord 4(6):567–571. https://doi.org/10.1016/j.msard.2015.09.001

    Article  PubMed  Google Scholar 

  115. Casetta I, Invernizzi M, Granieri E (2001) Multiple sclerosis and dental amalgam: case-control study in Ferrara, Italy. Neuroepidemiology 20(2):134–137. https://doi.org/10.1159/000054773

    Article  CAS  PubMed  Google Scholar 

  116. Bates MN, Fawcett J, Garrett N, Cutress T, Kjellstrom T (2004) Health effects of dental amalgam exposure: a retrospective cohort study. Int J Epidemiol 33(4):894–902. https://doi.org/10.1093/ije/dyh164

    Article  PubMed  Google Scholar 

  117. Ceccatelli S, Dare E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188(2):301–308. https://doi.org/10.1016/j.cbi.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  118. Kakita A, Wakabayashi K, Su M, Yoneoka Y, Sakamoto M, Ikuta F, Takahashi H (2000) Intrauterine methylmercury intoxication. Consequence of the inherent brain lesions and cognitive dysfunction in maturity. Brain Res 877(2):322–330

    Article  CAS  PubMed  Google Scholar 

  119. Sakaue M, Mori N, Makita M, Fujishima K, Hara S, Arishima K, Yamamoto M (2009) Acceleration of methylmercury-induced cell death of rat cerebellar neurons by brain-derived neurotrophic factor in vitro. Brain Res 1273:155–162. https://doi.org/10.1016/j.brainres.2009.03.035

    Article  CAS  PubMed  Google Scholar 

  120. Yee S, Choi BH (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17(1):17–26

    CAS  PubMed  Google Scholar 

  121. Shanker G, Aschner JL, Syversen T, Aschner M (2004) Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 128(1):48–57. https://doi.org/10.1016/j.molbrainres.2004.05.022

    Article  CAS  PubMed  Google Scholar 

  122. Aschner M, Allen JW (2000) Astrocytes in methylmercury, ammonia, methionine sulfoximine and alcohol-induced neurotoxicity. Neurotoxicology 21(4):573–579

    CAS  PubMed  Google Scholar 

  123. Ramanathan G, Atchison WD (2011) Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury. Neurotoxicology 32(6):742–750. https://doi.org/10.1016/j.neuro.2011.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Amonpatumrat S, Sakurai H, Wiriyasermkul P, Khunweeraphong N, Nagamori S, Tanaka H, Piyachaturawat P, Kanai Y (2008) L-glutamate enhances methylmercury toxicity by synergistically increasing oxidative stress. J Pharmacol Sci 108(3):280–289

    Article  CAS  PubMed  Google Scholar 

  125. Wang X, Yan M, Zhao L, Wu Q, Wu C, Chang X, Zhou Z (2016) Low-dose methylmercury-induced apoptosis and mitochondrial DNA mutation in human embryonic neural progenitor cells. Oxidative Med Cell Longev 2016:5137042. https://doi.org/10.1155/2016/5137042

    Article  CAS  Google Scholar 

  126. Szumanska G, Gadamski R, Albrecht J (1993) Changes of the Na/K ATPase activity in the cerebral cortical microvessels of rat after single intraperitoneal administration of mercuric chloride: histochemical demonstration with light and electron microscopy. Acta Neuropathol 86(1):65–70

    Article  CAS  PubMed  Google Scholar 

  127. Teixeira FB, Fernandes RM, Farias PMA, Costa NMM, Fernandes LMP, Santana LNS, Silva AF, Silva MCF, Maia CSF, Lima RR (2014) Evaluation of the effects of chronic intoxication with inorganic mercury on memory and motor control in rats. Int J Env Res Pub He 11(9):9171–9185. https://doi.org/10.3390/ijerph110909171

    Article  CAS  Google Scholar 

  128. Goering PL, Morgan DL, Ali SF (2002) Effects of mercury vapor inhalation on reactive oxygen species and antioxidant enzymes in rat brain and kidney are minimal. J Appl Toxicol: JAT 22(3):167–172. https://doi.org/10.1002/jat.844

    Article  CAS  PubMed  Google Scholar 

  129. Cooper JF, Kusnecov AW (2007) Methylmercuric chloride induces activation of neuronal stress circuitry and alters exploratory behavior in the mouse. Neuroscience 148(4):1048–1064. https://doi.org/10.1016/j.neuroscience.2007.07.034

    Article  CAS  PubMed  Google Scholar 

  130. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    Article  PubMed  PubMed Central  Google Scholar 

  131. Manfroi CB, Schwalm FD, Cereser V, Abreu F, Oliveira A, Bizarro L, Rocha JBT, Frizzo MES, Souza DO, Farina M (2004) Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system. Toxicol Sci 81(1):172–178. https://doi.org/10.1093/toxsci/kfh201

    Article  CAS  PubMed  Google Scholar 

  132. Sakamoto M, Kakita A, Wakabayashi K, Takahashi H, Nakano A, Akagi H (2002) Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res 949(1–2):51–59

    Article  CAS  PubMed  Google Scholar 

  133. Antonelli MC, Pallares ME, Ceccatelli S, Spulber S (2017) Long-term consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog Neurobiol 155:21–35. https://doi.org/10.1016/j.pneurobio.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  134. Boomhower SR, Newland MC (2016) Adolescent methylmercury exposure affects choice and delay discounting in mice. Neurotoxicology 57:136–144. https://doi.org/10.1016/j.neuro.2016.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pope DA, Newland MC, Hutsell BA (2015) Delay-specific stimuli and genotype interact to determine temporal discounting in a rapid-acquisition procedure. J Exp Anal Behav 103(3):450–471. https://doi.org/10.1002/jeab.148

    Article  PubMed  Google Scholar 

  136. Fujimura M, Usuki F (2017) In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice. Toxicology 392:55–63. https://doi.org/10.1016/j.tox.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  137. Fujimura M, Usuki F (2017) Site-specific neural hyperactivity via the activation of MAPK and PKA/CREB pathways triggers neuronal degeneration in methylmercury-intoxicated mice. Toxicol Lett 271:66–73. https://doi.org/10.1016/j.toxlet.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  138. Agrawal M, Bhaskar AS, Lakshmana Rao PV (2015) Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells. Mol Neurobiol 51(3):1379–1394. https://doi.org/10.1007/s12035-014-8816-4

    Article  CAS  PubMed  Google Scholar 

  139. Venkatesan RS, Sadiq AM (2017) Effect of morin-5′-sulfonic acid sodium salt on the expression of apoptosis related proteins caspase 3, Bax and Bcl 2 due to the mercury induced oxidative stress in albino rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 85:202–208. https://doi.org/10.1016/j.biopha.2016.09.090

    Article  CAS  Google Scholar 

  140. Shen AN, Cummings C, Hoffman D, Pope D, Arnold M, Newland MC (2016) Aging, motor function, and sensitivity to calcium channel blockers: an investigation using chronic methylmercury exposure. Behav Brain Res 315:103–114. https://doi.org/10.1016/j.bbr.2016.07.049

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the current research funds 2018 of IRCCS “Centro Neurolesi Bonino Pulejo.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Mazzon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cariccio, V.L., Samà, A., Bramanti, P. et al. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 187, 341–356 (2019). https://doi.org/10.1007/s12011-018-1380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1380-4

Keywords

Navigation