Skip to main content
Log in

Health Risk Assessment and Urinary Excretion of Children Exposed to Arsenic through Drinking Water and Soils in Sonora, Mexico

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Environmental arsenic exposure is associated with increased risk of non-cancerous chronic diseases and a variety of cancers in humans. The aims of this study were to carry out for the first time a health risk assessment for two common arsenic exposure routes (drinking water and soil ingestion) in children living in the most important agricultural areas in the Yaqui and Mayo valleys in Sonora, Mexico. Drinking water sampling was conducted in the wells of 57 towns. A cross-sectional study was done in 306 children from 13 villages in the valleys. First morning void urine samples were analyzed for inorganic arsenic (InAs) and monomethyl and dimethyl arsenic (MMA and DMA) by HPLC/ICP-MS. The results showed a wide range of arsenic levels in drinking water between 2.7 and 98.7 μg As/L. Arsenic levels in agricultural and backyard soils were in the range of < 10–27 mg As/kg. The hazard index (HI) = ∑hazard quotient (HQ) for drinking water, agricultural soil, and backyard soil showed values > 1 in 100% of the study towns, and the carcinogenic risk (CR) was greater than 1E−04 in 85%. The average of arsenic excreted in urine was 31.7 μg As/L, and DMA had the highest proportion in urine, with averages of 77.8%, followed by InAs and MMA with 11.4 and 10.9%, respectively, percentages similar to those reported in the literature. Additionally, positive correlations between urinary arsenic levels and HI values were found (r = 0.59, P = 0.000). These results indicated that this population is at high risk of developing chronic diseases including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liang CP, Wang SW, Kao YH, Chen JS (2016) Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environ Geochem Health 38:1271–1281

    Article  CAS  PubMed  Google Scholar 

  2. Cubadda F, D’Amato M, Mancini FR, Aureli F, Raggi A, Busani L, Mantovani A (2015) Assessing human exposure to inorganic arsenic in high-arsenic areas of Latium: a biomonitoring study integrated with indicators of dietary intake. Ann Ig 27:39–51

    CAS  PubMed  Google Scholar 

  3. Beamer PI, Klimecki WT, Loh M, Van Horne YO, Sugeng AJ, Lothrop N, Billheimer D, Guerra S, Lantz RC, Canales RA, Martinez FD (2016) Association of children’s urinary CC16 levels with arsenic concentrations in multiple environmental media. Int J Environ Res Public Health 13(5):521

    Article  PubMed Central  Google Scholar 

  4. Kurzius-Spencer M, Burgess JL, Harris RB, Hartz V, Roberge J, Huang S, Hsu C-H, O’Rourke MK (2014) Contribution of diet to aggregate arsenic exposures—an analysis across populations. J Exp Sci Environ Epidemiol 24(2):156–162

    Article  CAS  Google Scholar 

  5. Kurzius-Spencer M, O’Rourke MK, Hsu C-H, Hartz V, Harris RB, Burgess JL (2013) Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure. J Exp Sci and Environ Epidemiol 23:442–449

    Article  CAS  Google Scholar 

  6. Tang J, Bian J, Li Z, Li Y, Yang W, Liang S (2017) Comparative study on the hydrogeochemical environment at the major drinking water based arsenism areas. Appl Geochem 77:62–67

    Article  CAS  Google Scholar 

  7. Bondu R, Cloutier V, Rosa E, Benzaazoua M (2016) A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers. Water Air Soil Poll 227(9):296

    Article  Google Scholar 

  8. Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno López MV, Lopez D, Jean JS, Cornejo L, Macedo LFL, Filho AT (2012) Review: arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429:92–106

    Article  CAS  PubMed  Google Scholar 

  9. Sharratt BS, Feng G (2006) Evidence of direct suspension of soil particulates on the Columbia Plateau. International Conference on Aeolian Research

  10. Moreno-Rodríguez V, Del Rio-Salas R, Adams DK, Ochoa-Landin L, Zepeda J, Gómez-Alvarez A, Palafox-Reyes J, Meza-Figueroa D (2015) Historical trends and sources of TSP in a Sonoran desert city: can the North America Monsoon enhance dust emissions? Atmos Environ 110:111–121

    Article  Google Scholar 

  11. Roberge J, O’Rourke MK, Meza-Montenegro MM, Gutiérrez-Millán LE, Burgess JL, Harris RB (2012) Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations. Int J Environ Res Public Health 9:1051–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burgess JL, Meza MM, Josyula AB, Poplin GS, Kopplin MJ, McClellen H, Sturup S, Lantz RC (2007) Environmental arsenic exposure and urinary 8-OHdG in Arizona and Sonora. Clin Toxicol 45:490–498

    Article  CAS  Google Scholar 

  13. Caceres D, Pino P, Montesinos N, Atalah E, Amigo H, Loomis D (2005) Exposure to organic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ Res 98:151–159

    Article  CAS  PubMed  Google Scholar 

  14. Burgess JL, Kurzius-Spencer M, O’Rourke MK, Littau SR, Roberge J, Meza-Montenegro MM, Gutiérrez-Millán LE, Harris RB (2013) Environmental arsenic exposure and serum matrix metalloproteinase-9. Expo Sci Environ Epidemiol 23(2):163–169

    Article  CAS  Google Scholar 

  15. Calderon RL, Hudgens EE, Carty C, He B, Le XC, Rogers J, Thomas DJ (2013) Biological and behavioral factors modify biomarkers of arsenic exposure in a U.S. population. Environ Res 126:134–144

    Article  CAS  PubMed  Google Scholar 

  16. Mendoza-Cano O, Sánchez-Piña RA, Barrón-Quintana J, Cuevas-Arellano HB, Escalante-Minakata P, Solano-Barajas R (2017) Riesgos potenciales de salud por consumo de agua con arsénico en Colima, México. Salud Publica Mex 59(1):34–40

    Article  PubMed  Google Scholar 

  17. Meza-Montenegro MM, Gandolfi AJ, Santana-Alcántar ME, Gomez-Alvarez A, Mendivil-Quijada H, Valencia M, Meza-Figueroa D (2012) Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Sci Total Environ 433:472–481

    Article  CAS  PubMed  Google Scholar 

  18. Meza-Montenegro MM, Valenzuela-Quintanar AI, Balderas-Cortés JJ, Yañez-Estrada L, Gutiérrez-Coronado ML, Cuevas-Robles A, Gandolfi AJ (2013) Exposure assessment of organochlorine pesticides, arsenic, and lead in children from the major agricultural areas in Sonora, Mexico. Arch Environ Contam Toxicol 64:519–527

    Article  CAS  PubMed  Google Scholar 

  19. Instituto Nacional de Estadística y Geografía (INEGI). 2010. Microdatos. http://www.inegi.org.mx/est/contenidos/proyectos/accesomicrodatos/. Accessed 06 Sep 2017

  20. Meza MM, Kopplin MJ, Burgess JL, Gandolfi AJ (2008) Urinary arsenic methylation in children exposed at low-level in the Yaqui Valley, Sonora. J Environ Toxicol Chem 90(5):957–970

    Article  Google Scholar 

  21. NOM-230-SSA1–2002. Norma Oficial Mexicana Salud ambiental. Agua para uso y consumo humano. Requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo. Diario Oficial de la Federación 2005

  22. United States Environmental Protection Agency. 2007. Microwave assisted acid digestion of aqueous samples and extracts, Method 3015A. https://www.epa.gov/hw-sw846/sw-846-test-method-3015a-microwave-assisted-acid-digestion-aqueous-samples-and-extracts. Accessed 07 Sep 2017

  23. Meza MM, Yu L, Rodríguez YY, Guiad M, Thompson D, Gandolfi AJ, Klimecki WT (2005) Developmentally restricted genetic determinants of human arsenic metabolism: association between genetic urinary methylated arsenic and CYT 19 polymorphism in children. Environ Health Persp 113:775–781

    Article  CAS  Google Scholar 

  24. United States Environmental Protection Agency. 2009. Highlights of the Child-Specific Exposure Factors Handbook (Final Report). USEPA, Washington, DC, EPA/600/R-08/135, 2009

  25. NOM-127-SSA1–1994. Norma Oficial Mexicana. Agua para uso y consumo humano. Límites permisibles de calidad. Diario Oficial de la Federación 2000

  26. NOM-147-SEMARNAT/SSA1–2004. NORMA Oficial Mexicana, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación 2007

  27. World Health Organization (WHO). 2001. Arsenic and Arsenic Compounds, 2nd edn. Environmental Health Criteria 224. Geneva 2001. (accessed Sep. 6 2017). http://www.inchem.org/documents/ehc/ehc/ehc224.htm

  28. Wyatt CJ, Fimbres C, Romo L, Mendéz RO, Grijalva M (1998) Incidence of heavy metal contamination in water supplies in Northern Mexico. Environ Res 76:114–119

    Article  CAS  PubMed  Google Scholar 

  29. Meza MM, Kopplin MJ, Burgess JL, Gandolfi AJ (2004) Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora México. Environ Res 96:119–126

    Article  CAS  PubMed  Google Scholar 

  30. Maldonado JF, Meza-Figueroa D, Dévora AG, García-Rico L, Burgess JL, Lantz RC, Yáñez-Estrada L, Martínez-Cinco MA, Balderas JJ, Mondaca I, Meza-Montenegro MM (In Press 2018) An integrated health risk assessment of indigenous children exposed to arsenic in Sonora, Mexico Human Ecol Risk Assess doi: https://doi.org/10.1080/10807039.2018.1449098

  31. Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Gandolfi AJ, Gonzalez-De Alba C (2015) In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol 35:358–366

    Article  CAS  PubMed  Google Scholar 

  32. González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM (2015) A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int J Environ Res Public Health 12:4587–4601

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, Pavković M, Ochoa-Martínez A, López-Ventura D, Medeiros M, Barbier OC, Pérez-Maldonado IN, Sabbisetti VS, Bonventre JV, Vaidya VS (2016) Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res 150:653–662

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pérez-Vázquez J, Flores-Ramírez R, Ochoa-Martínez AC, Carrizales-Yáñez L, Ilizaliturri-Hernández CA, Moctezuma-González J, Pruneda-Álvarez LG, Ruiz-Vera T, Orta-García ST, González-Palomo AK, Pérez-Maldonado IN (2016) Human health risks associated with heavy metals in soil in different areas of San Luis Potosí, México. Hum Ecol Risk Assess 22:323–336

    Article  Google Scholar 

  35. Del Razo LM, Garcia-Vargas G, Hernandez MC, Gómez-Muñoz CME (1999) Profile of urinary arsenic metabolites in children chronically exposed to inorganic arsenic in Mexico. In: Chappel WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Oxford, pp 281–287

    Chapter  Google Scholar 

  36. Secretaria de Salubridad y Asistencia. Prevalence of the major diseases in children between 5–14 years. Report Sanitary Jurisdiccion IV Cajeme 2008 (Prevalencia de las principales enfermedades en niños entre 5–14 años. Jurisdicción Sanitaria IV. Cajeme 2008 SSA, Secretaria de Salubridad y Asistencia)

  37. Waqas H, Shan A, Khan YG, Nawaz R, Rizwan M, Saif-Ur- Rehman M, Shakoor MB, Ahmed W, Jabeen M (2017) Human health risk assessment of arsenic in groundwater aquifers of Lahore, Pakistan. Hum Ecol Risk Assess 23(4):836–850

    Article  CAS  Google Scholar 

  38. Phan K, Sthiannopkao S, Kim K-W, Wong MH, Sao V, Hashim JH, Yasin MSM, Aljunid SM (2010) Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 44(19):5777–5788

    Article  CAS  PubMed  Google Scholar 

  39. United States Environmental Protection Agency- IRIS. 2014. Toxicological Review of Inorganic Arsenic (Preliminary Assessment Materials). U.S. Environmental Protection Agency, Washington, DC, EPA/630/R-14/101, 2014

  40. Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152(1–4):129–152

    Article  CAS  Google Scholar 

  41. García-Rico L, Meza-Figueroa D, Gandolfi AJ, Del Río-Salas R, Romero FM, Meza-Montenegro MM (2016) Dust–metal sources in an urbanized arid zone: implications for health-risk assessments. Arch Environ Contam Toxicol 70:522–533

    Article  PubMed  Google Scholar 

  42. Wei B, Yang L (2010) A review of heavy contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  43. Jasso-Pineda Y, Espinosa-Reyes G, González-Mille D, Razo-Soto I, Carrizales L, Torres-Dosal A, Mejía-Saavedra J, Monroy M, Ize AI, Yarto M, Díaz-Barriga F (2007) An integrated health risk assessment approach to the study of mining sites contaminated with arsenic and lead. Integr Environ Assess Manag 3:344–350

    Article  CAS  PubMed  Google Scholar 

  44. Vu CT, Lin C, Yeh G, Villanueva MC (2017) Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assessment and possible human health implications. Environ Sci Pollut Res 24(23):19422–19434

    Article  CAS  Google Scholar 

  45. Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for arsenic. Public Health Services, Atlanta, United States Department of Health and Human Services

    Google Scholar 

  46. Ochoa-Martinez AC, Orta-Garcia ST, Rico-Escobar EM, Carrizales-Yañez L, Martin Del Campo JD, Pruneda-Alvarez LD, Ruiz-Vera T, Gonzalez-Palomo AK, Piña-Lopez IG, Torres-Dosal A, Pérez-Maldonado IN (2016) Exposure assessment to environmental chemicals in children from Ciudad Juarez, Chihuahua, Mexico. Arch Environ Contam Toxicol 70:657–670

    Article  CAS  PubMed  Google Scholar 

  47. Trejo-Acevedo A, Díaz-Barriga F, Carrizales L, Domínguez G, Costilla R, Ize-Lema I, Yarto-Ramírez M, Gavilán-García A, Mejía-Saavedra JJ, Pérez-Maldonado IN (2009) Exposure assessment of persistent organic pollutants and metals in Mexican children. Chemosphere 74:974–980

    Article  CAS  PubMed  Google Scholar 

  48. Concha G, Vogler G, Nermell B (2002) Intra-individual variation in the metabolism of inorganic arsenic. Int Arch Environ Health 75:576–580

    Article  CAS  Google Scholar 

  49. Sun G, Xu X, Li Y, Jin B, Li SX (2007) Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environ Health Persp 115:648–652

    Article  CAS  Google Scholar 

  50. Chowdhury UK, Rahman MM, Segunpta MK, Lodth D, Chanda CR, Roy S, Quamruzzaman Q, Tokunaga H, Ando M, Chakraborti D (2003) Pattern of excretion of arsenic compounds (arsenite, arsenate, MMA V, DMA V) in urine of children compared to adults from arsenic exposed area in Blangadesh. J Environ Sci Health 38:87–113

    Article  Google Scholar 

  51. Kalman DA, Hughes J, Van Belle G, Burbacher T, Bolgiano D, Coble K, Mottet NK, Polissar L (1990) The effect of variable environmental arsenic contamination of urinary concentrations of arsenic species. Environ Health Persp 89:145–151

    Article  CAS  Google Scholar 

  52. Vahter M, Concha G, Nermell B, Nilsson R, Dulout F, Natarajan AT (1995) A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol 293:455–462

    Article  CAS  PubMed  Google Scholar 

  53. Concha G, Nermell B, Vahter MV (1998) Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ Health Perspect 106:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hopenhayn-Rich C, Biggs ML, Smith AH, Kalman DA, Moore LE (1996) Methylation study of a population environmentally exposed to arsenic in drinking water. Environ Health Perspect 104:620–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiou HY, Hsueh YM, Hsieh LL, Hsu LI, Hsu YH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC, Chu TH, Chen-Wu C, Yang MH, Chen CJ (1997) Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res 386:197–207

    Article  PubMed  Google Scholar 

  56. Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catecol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 39:19–52

    Article  CAS  PubMed  Google Scholar 

  57. National Research Council (NRC) Subcommittee on Arsenic in Drinking Water. Arsenic in Drinking Water. Washington (DC): National Academies Press (US); 1999. 6, Biomarkers of Arsenic Exposure. Available from: https://www.ncbi.nlm.nih.gov/books/NBK230898/

Download references

Acknowledgments

We are grateful to Dr. A. Jay Gandolfi of the University of Arizona for making the arsenic investigation in Sonora, Mexico, a reality, and for his support in consolidating our research group in the arsenic field. In addition, we would like to thank Dr. Paul W. Kilpatrick for helping with the English edition. This research was supported by CONACYT-FONSALUD Grant 000000233976, the NIEHS Superfund Basic Research Program at the University of Arizona (ES 04940), and the PROFAPI_00396 and PROFAPI_539 Grants at ITSON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. Meza-Montenegro.

Ethics declarations

The protocol of urine collection was approved by the Human Subject Committee of the Technological Institute of Sonora (ITSON). A signed consent for each participant and a signed parental consent for each child were obtained.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Rico, L., Meza-Figueroa, D., Jay Gandolfi, A. et al. Health Risk Assessment and Urinary Excretion of Children Exposed to Arsenic through Drinking Water and Soils in Sonora, Mexico. Biol Trace Elem Res 187, 9–21 (2019). https://doi.org/10.1007/s12011-018-1347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1347-5

Keywords

Navigation