Skip to main content
Log in

Is Iron Accumulation a Possible Risk Factor for Sarcopenia?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Sarcopenia has a high incidence among the elderly, with significant negative effects on the quality of life. The pathogenesis of sarcopenia is complex, and many factors are involved in its development and progression. Sarcopenia might be associated with iron accumulation given that (1) age-related iron accumulation was found in the skeletal muscle, (2) excess iron could cause skeletal muscle damage or atrophy, and (3) patients with sarcopenia showed higher levels of serum ferritin. Understanding the etiology and pathogenesis of sarcopenia would help to develop new treatment and preventive methods, thereby improving the quality of life of the elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

DMT1 :

divalent metal transporter 1

HJV :

hemojuvelin

TfR1 :

transferrin receptor 1

IRP2 :

iron regulatory protein 2

FPN1 :

ferroportin 1

ROS :

reactive oxygen species

References

  1. Siddique A, Kowdley KV (2012) Review article: the iron overload syndromes. Aliment Pharmacol Ther 35:876–893. https://doi.org/10.1111/j.1365-2036.2012.05051.x

    Article  CAS  PubMed  Google Scholar 

  2. Xu J, Jia Z, Knutson MD, Leeuwenburgh C (2012) Impaired iron status in aging research. Int J Mol Sci 13:2368–2386. https://doi.org/10.3390/ijms13022368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheftel AD, Mason AB, Ponka P (2012) The long history of iron in the universe and in health and disease. Biochim Biophys Acta 1820:161–187. https://doi.org/10.1016/j.bbagen.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105. https://doi.org/10.1016/j.mito.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  5. Li GF, Pan YZ, Sirois P, Li K, Xu YJ (2012) Iron homeostasis in osteoporosis and its clinical implications. Osteoporos Int 23:2403–2408. https://doi.org/10.1007/s00198-012-1982-1

    Article  CAS  PubMed  Google Scholar 

  6. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, de Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256. https://doi.org/10.1016/j.jamda.2011.01.003

    Article  PubMed  Google Scholar 

  8. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, Collamati A, D'Angelo E, Pahor M, Bernabei R, Landi F (2017) Sarcopenia: an overview. Aging Clin Exp Res 29:11–17. https://doi.org/10.1007/s40520-016-0704-5

    Article  PubMed  Google Scholar 

  9. Altun M, Edstrom E, Spooner E, Flores-Moralez A, Bergman E, Tollet-Egnell P, Norstedt G, Kessler BM, Ulfhake B (2017) Iron load and redox stress in skeletal muscle of aged rats. Muscle Nerve 36:223–233. https://doi.org/10.1002/mus.20808

    Article  CAS  Google Scholar 

  10. Jung SH, DeRuisseau LR, Kavazis AN, DeRuisseau KC (2008) Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins. Exp Physiol 93:407–414. https://doi.org/10.1113/expphysiol.2007.039453

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Knutson MD, Carter CS, Leeuwenburgh C (2008) Iron accumulation with age, oxidative stress and functional decline. PLoS One 3:e2865. https://doi.org/10.1371/journal.pone.0002865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, Leeuwenburgh C, Dupont-Versteegden EE (2008) Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol 43:563–570. https://doi.org/10.1016/j.exger.2008.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu J, Hwang JC, Lees HA, Wohlgemuth SE, Knutson MD, Judge AR, Dupont-Versteegden EE, Marzetti E, Leeuwenburgh C (2012) Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy. Exp Gerontol 47:100–108. https://doi.org/10.1016/j.exger.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  14. DeRuisseau KC, Park YM, DeRuisseau LR, Cowley PM, Fazen CH, Doyle RP (2013) Aging-related changes in the iron status of skeletal muscle. Exp. Gerontol 48:1294–1302. https://doi.org/10.1016/j.exger.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  15. Aydemir TB, Troche C, Kim J, Kim MH, Teran OY, Leeuwenburgh C, Cousins RJ (2016) Aging amplifies multiple phenotypic defects in mice with zinc transporter Zip14 (Slc39a14) deletion. Exp Gerontol 85:88–94. https://doi.org/10.1016/j.exger.2016.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reardon TF, Allen DG (2009) Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94:720–730. https://doi.org/10.1113/expphysiol.2008.046045

    Article  CAS  PubMed  Google Scholar 

  17. Kasztura M, Dzięgała M, Kobak K, Bania J, Mazur G, Banasiak W, Ponikowski P, Jankowska EA (2017) Both iron excess and iron depletion impair viability of rat H9C2 cardiomyocytes and L6G8C5 myocytes. Kardiol Pol 75:267–275. https://doi.org/10.5603/KP.a2016.0155

    Article  PubMed  Google Scholar 

  18. Arruda LF, Arruda SF, Campos NA, de Valencia FF, Siqueira EM (2013) Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS One 8:e61058. https://doi.org/10.1371/journal.pone.0061058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seo AY, Xu J, Servais S, Hofer T, Marzetti E, Wohlgemuth SE, Knutson MD, Chung HY, Leeuwenburgh C (2008) Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7:706–716

    Article  CAS  Google Scholar 

  20. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137:1247–1258. https://doi.org/10.1016/j.cell.2009.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang LP, Jarrett SG, Patel M (2008) Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J. Neurosci 28: 11550–11556. doi: 10.1523/JNEUROSCI.3016-08.2008

    Article  CAS  Google Scholar 

  22. Duvigneau JC, Piskernik C, Haindl S, Kloesch B, Hartl RT, Hüttemann M, Lee I, Ebel T, Moldzio R, Gemeiner M, Redl H, Kozlov AV (2008) A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction. Lab Investig 88:70–77. https://doi.org/10.1038/labinvest.3700691

    Article  CAS  PubMed  Google Scholar 

  23. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301. https://doi.org/10.1016/j.biocel.2013.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solomon A, Bouloux P (2006) Endocrine therapies for sarcopenia in older men. Br J Hosp Med 67:477–481. https://doi.org/10.12968/hmed.2006.67.Sup9.22000

    Article  Google Scholar 

  25. Sayed RK, de Leonardis EC, Guerrero-Martinez JA et al (2016) Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice. Exp Gerontol 83:22–30. https://doi.org/10.1016/j.exger.2016.07.007

    Article  PubMed  Google Scholar 

  26. Kramer IF, Snijders T, Smeets JSJ, Leenders M, van Kranenburg J, den Hoed M, Verdijk LB, Poeze M, van Loon LJC (2017) Extensive type II muscle Fiber atrophy in elderly female hip fracture patients. J Gerontol A Biol Sci Med Sci 72:1369–1375. https://doi.org/10.1093/gerona/glw253

    Article  PubMed  Google Scholar 

  27. Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y, Tamaki T (2016) Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol 35:66–76. https://doi.org/10.1016/j.jtemb.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  28. Kim HK, Hwang HJ, Kim SH (2014) Relationship between serum ferritin levels and sarcopenia in Korean females aged 60 years and older using the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-2, 3), 2008–2009. PLoS One 9:e90105. https://doi.org/10.1371/journal.pone.0090105. eCollection 2014

    Article  Google Scholar 

  29. Nakagawa C, Inaba M, Ishimura E, Yamakawa T, Shoji S, Okuno S (2016) Association of increased serum ferritin with impaired muscle strength/quality in hemodialysis patients. J Ren Nutr 26:253–257. https://doi.org/10.1053/j.jrn.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  30. Perna S, Peroni G, Faliva MA, Bartolo A, Naso M, Miccono A, Rondanelli M (2017) Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin Exp Res 29:1249–1258. https://doi.org/10.1007/s40520-016-0701-8

    Article  PubMed  Google Scholar 

  31. Scott D, Blizzard L, Fell J, Giles G, Jones G (2010) Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc 58:2129–2134. https://doi.org/10.1111/j.1532-5415.2010.03147.x

    Article  PubMed  Google Scholar 

  32. Rodney GG, Pal R, Abo-Zahrah R (2016) Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 98:103–112. https://doi.org/10.1016/j.freeradbiomed.2016.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by the Jiangsu provincial key research and development program (No. BE2016720), and Jiangsu provincial maternal and child health program (No. F201506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyang Zhao.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G. Is Iron Accumulation a Possible Risk Factor for Sarcopenia?. Biol Trace Elem Res 186, 379–383 (2018). https://doi.org/10.1007/s12011-018-1332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1332-z

Keywords

Navigation