Advertisement

NaF Reduces KLK4 Gene Expression by Decreasing Foxo1 in LS8 Cells

  • Juedan Li
  • Peng Wang
  • Jianghong Gao
  • Xiuzhi Fei
  • Yan Liu
  • Jianping Ruan
Article
  • 60 Downloads

Abstract

Decreased expression and increased phosphorylation of Forkhead box o1 (Foxo1) in ameloblasts were observed both in vivo and in vitro when treated by fluoride. The present study aims to investigate the possible relationship between Foxo1 and enamel matrix proteinases, matrix metalloproteinase 20 (MMP20), and kallikrein 4 (KLK4), in NaF-treated ameloblasts. Ameloblast-like cells (LS8 cells) were exposed to NaF at selected concentration (0/2 mM) for 24 h. Gene overexpression and silencing experiments were used to up- and down-regulate Foxo1 expression. The expression levels of Foxo1, MMP20, and KLK4 were detected by quantitative real-time PCR and western blot. Dual luciferase reporter assay was performed to evaluate the regulation of Foxo1 on the transcriptional activity of KLK4 promoter. The results showed that KLK4 expression was decreased in LS8 cells treated by NaF, while MMP20 expression was not changed. Foxo1 activation led to significantly up-regulation of KLK4 in LS8 cells under NaF condition. Knockout of Foxo1 markedly decreased klk4 expression in mRNA level, and intensified inhibition occurred in LS8 cells when combined with NaF treatment. However, the variation trend of MMP20 was not clear. Dual luciferase reporter assay showed that Foxo1 activation enhanced the transcriptional activity of KLK4 promoter. These findings suggest that the decrease of Foxo1 expression induced by high fluoride was a cause for low KLK4 expression.

Keywords

NaF Foxo1 KLK4 MMP20 

Notes

Acknowledgments

We thank Professor Malcolm L. Snead (Department of Biomedical Sciences, University of Southern California) for donation of LS8 cells.

Funding Information

This study was funded by the National Natural Science Foundation of China (Grant No. 81470034).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Health USDo, Human Services Federal Panel on Community Water F (2015) U.S. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Rep 130(4):318–331.  https://doi.org/10.1177/003335491513000408 CrossRefGoogle Scholar
  2. 2.
    Clark MB, Slayton RL, Section on oral H (2014) Fluoride use in caries prevention in the primary care setting. Pediatrics 134(3):626–633.  https://doi.org/10.1542/peds.2014-1699 CrossRefPubMedGoogle Scholar
  3. 3.
    Nair R, Chuang JC, Lee PS, Leo SJ, Yang NQ, Yee R, Tong HJ (2016) Adult perceptions of dental fluorosis and select dental conditions—an Asian perspective. Community Dent Oral Epidemiol 44(2):135–144.  https://doi.org/10.1111/cdoe.12197 CrossRefPubMedGoogle Scholar
  4. 4.
    Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319–333.  https://doi.org/10.1016/j.cbi.2010.07.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Agalakova NI, Gusev GP (2012) Molecular mechanisms of cytotoxicity and apoptosis induced by inorganic fluoride. ISRN Cell Biol 2012:1–16.  https://doi.org/10.5402/2012/403835 CrossRefGoogle Scholar
  6. 6.
    Wahluyo S, Ismiyatin K, Purwanto B, Mukono IS (2017) The influence of sodium fluoride on the growth of ameloblasts and kidney proximal tubular cells. Folia Biol (Praha) 63(1):31–34Google Scholar
  7. 7.
    Denbesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96.  https://doi.org/10.1159/000327028 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Suzuki M, Shin M, Simmer JP, Bartlett JD (2014) Fluoride affects enamel protein content via TGF-beta1-mediated KLK4 inhibition. J Dent Res 93(10):1022–1027.  https://doi.org/10.1177/0022034514545629 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    DenBesten PK, Zhu L, Li W, Tanimoto K, Liu H, Witkowska HE (2011) Fluoride incorporation into apatite crystals delays amelogenin hydrolysis. Eur J Oral Sci 119(Suppl 1):3–7.  https://doi.org/10.1111/j.1600-0722.2011.00903.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wei W, Gao Y, Wang C, Zhao L, Sun D (2013) Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion. Environ Toxicol 28(6):332–341.  https://doi.org/10.1002/tox.20724 CrossRefPubMedGoogle Scholar
  11. 11.
    Le MH, Nakano Y, Abduweli Uyghurturk D, Zhu L, Den Besten PK (2017) Fluoride alters Klk4 expression in maturation ameloblasts through androgen and progesterone receptor signaling. Front Physiol 8:925.  https://doi.org/10.3389/fphys.2017.00925 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sharma R, Tsuchiya M, Skobe Z, Tannous BA, Bartlett JD (2010) The acid test of fluoride: how pH modulates toxicity. PLoS One 5(5):e10895.  https://doi.org/10.1371/journal.pone.0010895 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    DenBesten PK, Yan Y, Featherstone JD, Hilton JF, Smith CE, Li W (2002) Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol 47(11):763–770CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Y, Yan Q, Li W, DenBesten PK (2006) Fluoride down-regulates the expression of matrix metalloproteinase-20 in human fetal tooth ameloblast-lineage cells in vitro. Eur J Oral Sci 114(Suppl 1):105–110; discussion 127–109, 380.  https://doi.org/10.1111/j.1600-0722.2006.00303.x CrossRefPubMedGoogle Scholar
  15. 15.
    Sharma R, Tye CE, Arun A, MacDonald D, Chatterjee A, Abrazinski T, Everett ET, Whitford GM, Bartlett JD (2011) Assessment of dental fluorosis in Mmp20 +/- mice. J Dent Res 90(6):788–792.  https://doi.org/10.1177/0022034511398868 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T (2017) The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med 214(4):1181–1198.  https://doi.org/10.1084/jem.20161263 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li Y, Ma Z, Jiang S, Hu W, Li T, Di S, Wang D, Yang Y (2017) A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog Lipid Res 66:42–49.  https://doi.org/10.1016/j.plipres.2017.04.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Han J, Jin R, Zhang M, Guo Q, Zhou F (2017) Ikaros 6 protects acute lymphoblastic leukemia cells against daunorubicin-induced apoptosis by activating the Akt-FoxO1 pathway. J Leukoc Biol 101(3):675–681.  https://doi.org/10.1189/jlb.2A0116-040RR CrossRefPubMedGoogle Scholar
  19. 19.
    Ochodnicka-Mackovicova K, Bahjat M, Maas C, van der Veen A, Bloedjes TA, de Bruin AM, van Andel H, Schrader CE, Hendriks RW, Verhoeyen E, Bende RJ, van Noesel CJ, Guikema JE (2016) The DNA damage response regulates RAG1/2 expression in pre-B cells through ATM-FOXO1 signaling. J Immunol 197(7):2918–2929.  https://doi.org/10.4049/jimmunol.1501989 CrossRefPubMedGoogle Scholar
  20. 20.
    Poche RA, Sharma R, Garcia MD, Wada AM, Nolte MJ, Udan RS, Paik JH, DePinho RA, Bartlett JD, Dickinson ME (2012) Transcription factor FoxO1 is essential for enamel biomineralization. PLoS One 7(1):e30357.  https://doi.org/10.1371/journal.pone.0030357 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gao J, Ruan J, Gao L (2014) Excessive fluoride reduces Foxo1 expression in dental epithelial cells of the rat incisor. Eur J Oral Sci 122(5):317–323.  https://doi.org/10.1111/eos.12148 CrossRefPubMedGoogle Scholar
  22. 22.
    Li J, Zhao L, Zhao X, Wang P, Liu Y, Ruan J (2017) Foxo1 attenuates NaF-induced apoptosis of LS8 cells through the JNK and mitochondrial pathways. Biol Trace Elem Res 181:104–111.  https://doi.org/10.1007/s12011-017-1015-1 CrossRefPubMedGoogle Scholar
  23. 23.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marin LM, Cury JA, Tenuta LM, Castellanos JE, Martignon S (2016) Higher fluorosis severity makes enamel less resistant to demineralization. Caries Res 50(4):407–413.  https://doi.org/10.1159/000447270 CrossRefPubMedGoogle Scholar
  25. 25.
    Martinez-Mier EA, Shone DB, Buckley CM, Ando M, Lippert F, Soto-Rojas AE (2016) Relationship between enamel fluorosis severity and fluoride content. J Dent 46:42–46.  https://doi.org/10.1016/j.jdent.2016.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lyaruu DM, Medina JF, Sarvide S, Bervoets TJ, Everts V, Denbesten P, Smith CE, Bronckers AL (2014) Barrier formation: potential molecular mechanism of enamel fluorosis. J Dent Res 93(1):96–102.  https://doi.org/10.1177/0022034513510944 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang Y, Kim JY, Horst O, Nakano Y, Zhu L, Radlanski RJ, Ho S, Den Besten PK (2014) Fluorosed mouse ameloblasts have increased SATB1 retention and Galphaq activity. PLoS One 9(8):e103994.  https://doi.org/10.1371/journal.pone.0103994 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Priyadharsini N, Malathi N, Tamizhchelvan H, Dineshkumar T (2015) Dental fluorosis: a histological study using light and confocal microscopy. Indian J Dent Res 26(3):248–251.  https://doi.org/10.4103/0970-9290.162896 CrossRefPubMedGoogle Scholar
  29. 29.
    Bronckers AL, Lyaruu DM, DenBesten PK (2009) The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res 88(10):877–893.  https://doi.org/10.1177/0022034509343280 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560.  https://doi.org/10.1177/0022034510384626 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tanimoto K, Le T, Zhu L, Chen J, Featherstone JD, Li W, DenBesten P (2008) Effects of fluoride on the interactions between amelogenin and apatite crystals. J Dent Res 87(1):39–44CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Duan X, Mao Y, Wen X, Yang T, Xue Y (2011) Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. J Dent Res 90(2):175–180.  https://doi.org/10.1177/0022034510385687 CrossRefPubMedGoogle Scholar
  33. 33.
    Sierant ML, Bartlett JD (2012) Stress response pathways in ameloblasts: implications for amelogenesis and dental fluorosis. Cell 1(3):631–645.  https://doi.org/10.3390/cells1030631 CrossRefGoogle Scholar
  34. 34.
    Bartlett JD (2013) Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent 2013:684607.  https://doi.org/10.1155/2013/684607 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bartlett JD, Simmer JP (2014) Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol 5:240.  https://doi.org/10.3389/fphys.2014.00240 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Seymen F, Park JC, Lee KE, Lee HK, Lee DS, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim YJ, Kim JW (2015) Novel MMP20 and KLK4 mutations in amelogenesis imperfecta. J Dent Res 94(8):1063–1069.  https://doi.org/10.1177/0022034515590569 CrossRefPubMedGoogle Scholar
  37. 37.
    Lee J, Yang G, Kim YJ, Tran QH, Choe W, Kang I, Kim SS, Ha J (2017) Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO1 signal pathway. Biochem Biophys Res Commun 491(3):733–739.  https://doi.org/10.1016/j.bbrc.2017.07.119 CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang L, Tschumi BO, Lopez-Mejia IC, Oberle SG, Meyer M, Samson G, Ruegg MA, Hall MN, Fajas L, Zehn D, Mach JP, Donda A, Romero P (2016) Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep 14(5):1206–1217.  https://doi.org/10.1016/j.celrep.2015.12.095 CrossRefPubMedGoogle Scholar
  39. 39.
    Sin TK, Yung BY, Siu PM (2015) Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cell Physiol Biochem 35(2):541–552.  https://doi.org/10.1159/000369718 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Department of General Dentistry, College of StomatologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Department of Preventive Dentistry, College of StomatologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations