Skip to main content

Advertisement

Log in

Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium (Cr) is a highly toxic, common heavy metal used in industrial production. There are two types of Cr in nature: hexavalent chromium (Cr(VI)) and chromium trichloride (Cr(III)). Cr(III) is involved in the metabolism of sugars and lipids, whereas Cr(VI) is absorbed through the respiratory tract and skin and generates free radicals that result in secondary toxicity. Cr(VI) leads to cancer in the occupational population and is therefore recognized as a human carcinogen by the International Agency for Research on Cancer. The specific mechanism underlying Cr-induced carcinogenesis is complex. In this study, two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry-based techniques were performed to analyze differentially expressed proteins between Beas-2B human bronchial epithelial cells and Cr(VI)-transformed Beas-2B cells. Many differentially expressed proteins were identified in the cells after malignant transformation, including serine/threonine kinase 11, endothelial nitric oxide synthase 3, apolipoprotein A1, vinculin, and lamin A/C. These proteins are involved in many signaling and metabolic pathways, including apoptosis, autophagy, the PI3K/Akt signaling pathway, focal adhesion, cell motility, and actin cytoskeleton rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Seidler A, Jahnichen S, Hegewald J et al. (2013) Reply to: Pesch B, Weiss T, Pallapies D, Schluter G, Bruning T. Letter to the editor. Re: Seidler A, Jahnichen S, Hegewald J, Fishta A, Krug O, Ruter L, Strik C, Hallier E, Straube S. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occup Environ Health 86:961–963, 8, DOI: https://doi.org/10.1007/s00420-013-0888-3

    Article  PubMed  Google Scholar 

  2. Voitkun V, Zhitkovich A, Costa M (1998) Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26(8):2024–2030. https://doi.org/10.1093/nar/26.8.2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 18(1):3–11. https://doi.org/10.1021/tx049774+

    Article  CAS  PubMed  Google Scholar 

  4. Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics: integrated biometal science 1:222–228

    Article  CAS  PubMed  Google Scholar 

  5. Matthews JO, Southern LL, Fernandez JM, Pontif JE, Bidner TD, Odgaard RL (2001) Effect of chromium picolinate and chromium propionate on glucose and insulin kinetics of growing barrows and on growth and carcass traits of growing-finishing barrows. J Anim Sci 79(8):2172–2178. https://doi.org/10.2527/2001.7982172x

    Article  CAS  PubMed  Google Scholar 

  6. Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188(2):276–288. https://doi.org/10.1016/j.cbi.2010.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tossavainen A (1990) Estimated risk of lung cancer attributable to occupational exposures in iron and steel foundries. IARC Sci Publ:363–367

  8. Morgensztern D, Ng SH, Gao F et al (2010) Trends in stage distribution for patients with non-small cell lung cancer: a National Cancer Database Survey. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer 5:29–33

    Google Scholar 

  9. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

    Article  PubMed  Google Scholar 

  10. Ettinger DS, Akerley W, Borghaei H et al. (2012) Non-small cell lung cancer. J Natl Compr Canc Netw Jnccn 10:1236

    Article  PubMed  Google Scholar 

  11. Siegel R, Ma J, Zou Z et al (2015) Cancer statistics, 2014. CA Cancer J Clin 63:11–30

    Article  Google Scholar 

  12. Johnson DH, Schiller JH, Jr BP (2014) Recent clinical advances in lung cancer management. J Clin Oncol Off J Am Soc Clin Oncol 32(10):973–982. https://doi.org/10.1200/JCO.2013.53.1228

    Article  CAS  Google Scholar 

  13. Park YH, Kim D, Dai J et al (2015) Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol 287(3):240–245. https://doi.org/10.1016/j.taap.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakthivel KM, Sehgal P (2016) A novel role of lamins from genetic disease to cancer biomarkers. Oncol Rev 10(2). https://doi.org/10.4081/oncol.2016.309

  15. Shimi T, Pfleghaar K, S, Pack C et al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409, 24, 3421, DOI: https://doi.org/10.1101/gad.1735208

    Article  CAS  Google Scholar 

  16. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14(1):13–24. https://doi.org/10.1038/nrm3488

    Article  CAS  PubMed  Google Scholar 

  17. Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS, Ramaekers FC (1993) Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am J Pathol 143(1):211–220

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaspi E, Frankel D, Guinde J, Perrin S, Laroumagne S, Robaglia-Schlupp A, Ostacolo K, Harhouri K, Tazi-Mezalek R, Micallef J, Dutau H, Tomasini P, de Sandre-Giovannoli A, Lévy N, Cau P, Astoul P, Roll P (2017) Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor performance status. PLoS One 12(8):e0183136. https://doi.org/10.1371/journal.pone.0183136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lei T, He QY, Cai Z, Zhou Y, Wang YL, Si LS, Cai Z, Chiu JF (2008) Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells. Proteomics 8(12):2420–2429. https://doi.org/10.1002/pmic.200701050

    Article  CAS  PubMed  Google Scholar 

  20. Kim D, Dai J, Yenwong FL et al (2015) Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development. J Biol Chem 290(4):2213–2224. https://doi.org/10.1074/jbc.M114.619783

    Article  CAS  PubMed  Google Scholar 

  21. Bruno M, Ross J, Ge Y (2016) Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: protein indicators of cytotoxicity conversion. Toxicol Lett 264:59–70. https://doi.org/10.1016/j.toxlet.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  22. Zhang E, Hatada M, Brewer JM, Lebioda L (1994) Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution. Biochemistry 33(20):6295–6300. https://doi.org/10.1021/bi00186a032

    Article  CAS  PubMed  Google Scholar 

  23. Braga F, Ferraro S, Mozzi R, Dolci A, Panteghini M (2013) Biological variation of neuroendocrine tumor markers chromogranin A and neuron-specific enolase. Clin Biochem 46(1-2):148–151. https://doi.org/10.1016/j.clinbiochem.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  24. Yan HJ, Tan Y, Gu W (2014) Neuron specific enolase and prognosis of non-small cell lung cancer: a systematic review and meta-analysis. J BUON: Off J Balkan Union Oncol 19:153–156

    Google Scholar 

  25. Atherton P, Stutchbury B, Jethwa D, Ballestrem C (2016) Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res 343(1):21–27. https://doi.org/10.1016/j.yexcr.2015.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ezzell RM, Goldmann WH, Wang N, Parashurama N, Ingber DE (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231(1):14–26. https://doi.org/10.1006/excr.1996.3451

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Choudhury DM, Craig SW (2006) Coincidence of actin filaments and talin is required to activate vinculin. J Biol Chem 281(52):40389–40398. https://doi.org/10.1074/jbc.M607324200

    Article  CAS  PubMed  Google Scholar 

  28. Mierke CT, Rosel D, Fabry B et al (2008) Contractile forces in tumor cell migration. Eur J Cell Biol 87(8-9):669–676. https://doi.org/10.1016/j.ejcb.2008.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179(5):1043–1057. https://doi.org/10.1083/jcb.200703036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thakur RK, Yadav VK, Kumar A, Singh A, Pal K, Hoeppner L, Saha D, Purohit G, Basundra R, Kar A, Halder R, Kumar P, Baral A, Kumar MJM, Baldi A, Vincenzi B, Lorenzon L, Banerjee R, Kumar P, Shridhar V, Mukhopadhyay D, Chowdhury S (2014) Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin. Nucleic Acids Res 42(18):11589–11600. https://doi.org/10.1093/nar/gku860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tada A, Kato H, Takenaga K, Hasegawa S (1997) Transforming growth factor beta1 increases the expressions of high molecular weight tropomyosin isoforms and vinculin and suppresses the transformed phenotypes in human lung carcinoma cells. Cancer Lett 121(1):31–37. https://doi.org/10.1016/S0304-3835(97)00319-4

    Article  CAS  PubMed  Google Scholar 

  32. Gill RK, Yang SH, Meerzaman D, Mechanic LE, Bowman ED, Jeon HS, Roy Chowdhuri S, Shakoori A, Dracheva T, Hong KM, Fukuoka J, Zhang JH, Harris CC, Jen J (2011) Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene 30(35):3784–3791. https://doi.org/10.1038/onc.2011.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy BC, Kohno TR, Moriguchi T et al (2010) Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung cancer (Amsterdam, Netherlands) 70(2):136–145. https://doi.org/10.1016/j.lungcan.2010.02.004

    Article  Google Scholar 

  34. Han D, Li SJ, Zhu YT, Liu L, Li MX (2013) LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer. Asian Pac J Cancer Prev Apjcp 14(7):4033–4039. https://doi.org/10.7314/APJCP.2013.14.7.4033

    Article  PubMed  Google Scholar 

  35. Ekizoglu S, Dogan S, Ulker D, Seven D, Gozen ED, Karaman E, Buyru N (2015) The effect of LKB1 on the PI3K/Akt pathway activation in association with PTEN and PIK3CA in HNC. Clin Otolaryngolog: Off J ENT-UK; Off J Netherlands Soc Oto-Rhino-Laryngol Cervico-Facial Surg 40(6):622–628. https://doi.org/10.1111/coa.12427

    Article  CAS  Google Scholar 

  36. Liu K, Luo Y, Tian H, Yu KZ, He JX, Shen WY (2014) The tumor suppressor LKB1 antagonizes WNT signaling pathway through modulating GSK3β activity in cell growth of esophageal carcinoma. Tumour Biol J Int Soc Oncodev Biol Med 35(2):995–1002. https://doi.org/10.1007/s13277-013-1133-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31271272) and the Nanjing 321 Plan (No. 2013A12001). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lu or Zhanao Wu.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Tang, M., Liu, Y. et al. Comparative Proteomics of Chromium-Transformed Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS. Biol Trace Elem Res 185, 78–88 (2018). https://doi.org/10.1007/s12011-017-1222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1222-9

Keywords

Navigation