Biological Trace Element Research

, Volume 183, Issue 1, pp 71–79 | Cite as

Iron: a Strong Element in the Pathogenesis of Chronic Hyperglycaemia After Acute Pancreatitis

  • Shayal K. Chand
  • Ruma G. Singh
  • Sayali A. Pendharkar
  • Maxim S. Petrov


Evidence shows an association between markers of iron metabolism and glucose metabolism in type 2 diabetes mellitus. Acute pancreatitis is the largest contributor to diabetes of the exocrine pancreas. However, the pathogenesis of new-onset pre-diabetes or diabetes after pancreatitis remains unclear. This study aimed to investigate associations between markers of iron metabolism and glucose metabolism following acute pancreatitis. Fasting blood samples were collected to analyse markers of glucose metabolism (haemoglobin A1c) and iron metabolism (hepcidin, ferritin, and soluble transferrin receptor). Participants were categorised into two groups: normoglycaemia after acute pancreatitis and chronic hyperglycaemia after acute pancreatitis. Binary logistic and linear regression analyses were conducted, and potential confounders were adjusted for in multivariable analyses. A total of 83 individuals following an episode of acute pancreatitis were included, of whom 19 developed chronic hyperglycaemia. Hepcidin was significantly increased in individuals with chronic hyperglycaemia after acute pancreatitis in two adjusted models (p = 0.045 and p = 0.048). Ferritin was significantly decreased in individuals with chronic hyperglycaemia after acute pancreatitis in three adjusted models (p = 0.016, p = 0.009, and p = 0.011). Soluble transferrin receptor was not significantly associated with chronic hyperglycaemia after acute pancreatitis. These findings suggest that iron metabolism is significantly altered in individuals with chronic hyperglycaemia after acute pancreatitis and may provide better insights into the pathogenesis of new-onset diabetes after pancreatitis.


Diabetes Ferritin Glucose metabolism Hepcidin Pancreas 



This study was part of the Clinical and Epidemiological Investigations in Metabolism, Nutrition, and Pancreatic Diseases (COSMOS) program. COSMOS is supported in part by the Health Research Council of New Zealand (grant 15/035 to Dr. Petrov), which played no role in the study design; collection, analysis, or interpretation of data; or writing of the manuscript.


  1. 1.
    Fernandez-Real JM, McClain D, Manco M (2015) Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 38:2169–2176. CrossRefPubMedGoogle Scholar
  2. 2.
    Root HF (1929) Insulin resistance and bronze diabetes. N Engl J Med 201:201–206. CrossRefGoogle Scholar
  3. 3.
    Fernandez-Real JM, Manco M (2014) Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol 2:513–526. CrossRefPubMedGoogle Scholar
  4. 4.
    Bonfils L, Ellervik C, Friedrich N, Linneberg A, Sandholt C, Jorgensen ME et al (2015) Fasting serum levels of ferritin are associated with impaired pancreatic beta cell function and decreased insulin sensitivity: a population-based study. Diabetologia 58:523–533. CrossRefPubMedGoogle Scholar
  5. 5.
    Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823(9):1434–1443. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bao W, Rong Y, Rong S, Liu L (2012) Dietary iron intake, body stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med 10:119–131. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao Z, Li S, Liu G, Yan F, Ma X, Huang Z et al (2012) Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS One 7:e41641. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kunutsor SK, Apekey TA, Walley J, Kain K (2013) Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev 29:308–318. CrossRefPubMedGoogle Scholar
  9. 9.
    Pechlaner R, Weiss G, Bansal S, Mayr M, Santer P, Pallhuber B (2016) Inadequate hepcidin serum concentrations predict incident type 2 diabetes mellitus. Diabetes Metab Res Rev 32:187–192. CrossRefPubMedGoogle Scholar
  10. 10.
    Bencaiova G, Krafft A, Burkhardt T, Zimmermann R (2005) Hemoglobinopathies, body iron stores and gestational diabetes mellitus. Haematologica 90:1138–1139PubMedGoogle Scholar
  11. 11.
    Rawal S, Hinkle S, Bao W, Zhu Y, Grewal J, Albert P (2017) A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia 60:249–257. CrossRefPubMedGoogle Scholar
  12. 12.
    Ren Y, Tian H, Li X, Liang J, Zhao G (2004) Elevated serum ferritin concentrations in a glucose-impaired population and in normal glucose tolerant first-degree relatives in familial type 2 diabetic pedigrees. Diabetes Care 27:622–623CrossRefPubMedGoogle Scholar
  13. 13.
    Fernandez-Real JM, Chico B, Moreno JM, Vendrell J, Lopez-Bermejo A, Ricart W (2007) Circulating soluble transferrin receptor according to glucose tolerance status and insulin sensitivity. Diabetes Care 30:604–608CrossRefPubMedGoogle Scholar
  14. 14.
    Pendharkar SA, Asrani VM, Xiao AY, Yoon HD, Murphy R, Windsor JA et al (2016) Relationship between pancreatic hormones and glucose metabolism: a cross-sectional study in patients after acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 311:G50–G58. CrossRefPubMedGoogle Scholar
  15. 15.
    Lankisch PG, Apte M, Banks PA (2015) Acute pancreatitis. Lancet 386:85–96. CrossRefPubMedGoogle Scholar
  16. 16.
    Xiao AY, Tan MLY, Wu LM, Asrani VM, Windsor JA, Yadav D et al (2016) Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol 1:45–55. CrossRefPubMedGoogle Scholar
  17. 17.
    Das SL, Singh PP, Phillips AR, Murphy R, Windsor JA, Petrov MS (2014) Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 63:818–831. CrossRefPubMedGoogle Scholar
  18. 18.
    Shen H, Yang C, Chang Y, Lu CL, Li CY (2015) Risk of diabetes mellitus after first-attack acute pancreatitis: a national population-based study. Am J Gastroenterol 110:1698–1706. CrossRefPubMedGoogle Scholar
  19. 19.
    Pendharkar SA, Mathew J, Petrov MS (2017) Age- and sex-specific prevalence of diabetes associated with diseases of the exocrine pancreas: a population-based study. Dig Liver Dis 49(5):540–544. CrossRefPubMedGoogle Scholar
  20. 20.
    Gillies N, Pendharkar SA, Asrani VM, Mathew J, Windsor JA, Petrov MS (2016) Interleukin-6 is associated with chronic hyperglycaemia and insulin resistance in patients after acute pancreatitis. Pancreatology 16:748–755. CrossRefPubMedGoogle Scholar
  21. 21.
    Gillies NA, Pendharkar SA, Singh RG, Asrani VM, Petrov MS (2017) Lipid metabolism in patients with chronic hyperglycaemia after an episode of acute pancreatitis. Diab Met Syndr: Clin Res Rev.
  22. 22.
    Gillies NA, Pendharkar SA, Singh RG, Windsor JA, Bhatia PMS (2017) Fasting levels of insulin and amylin after acute pancreatitis are associated with pro-inflammatory cytokines. Arch Physiol Biochem 20:1–11. Google Scholar
  23. 23.
    Pendharkar SA, Asrani VM, Murphy R, Cutfield R, Windsor JA, Petrov MS (2017) The role of gut-brain axis in regulating glucose metabolism after acute pancreatitis. Clin Transl Gastroen 8(1):e210. CrossRefGoogle Scholar
  24. 24.
    Maraví-Poma E, Zubia Olascoaga F, Petrov MS, Navarro Soto S, Laplaza Santos C, Morales Alava F et al (2013) SEMICYUC 2012. Recommendations for intensive care management of acute pancreatitis. Med Int 37(3):163–179. Google Scholar
  25. 25.
    Petrov MS (2017) Diabetes of the exocrine pancreas: American Diabetes Association-compliant lexicon. Pancreatology 17:523–526. CrossRefPubMedGoogle Scholar
  26. 26.
    Fabbrini E, Magkos F, Conte C, Mittendorfer B, Patterson BW, Okunade AL et al (2012) Validation of a novel index to assess insulin resistance of adipose tissue lipolytic activity in obese subjects. J Lipid Res 53(2):321–324. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hill NR, Levy JC, Matthews DR (2013) Expansion of the homeostasis model assessment of β-cell function and insulin resistance to enable clinical trial outcome modelling through the interactive adjustment of physiology and treatment effects: iHOMA2. Diabetes Care 36(8):2324–2330. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dellinger EP, Forsmark CE, Layer P, Lévy P, Maraví-Poma E, Petrov MS et al (2012) Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann Surg 256(6):875–880. CrossRefPubMedGoogle Scholar
  29. 29.
    Aregbesola A, Voutilainen S, Virtanen JK, Aregbesola A, Tuomainen T (2015) Serum hepcidin concentrations and type 2 diabetes. World J Diabetes 6(7):978–982. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aigner E, Felder TK, Oberkofler H, Hahne P, Auer S, Soyal S et al (2013) Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. J Nutr Biochem 24:112–117. CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang F, Sun Z, Tang Y, Xu C, Jiao X (2011) Hepcidin expression and iron parameters change in type 2 diabetes patients. Diabetes Res Clin Pact 93(1):43–48. CrossRefGoogle Scholar
  32. 32.
    Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels (2005) Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood 106(5):1864–1866CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandez-Real JM, Equitani F, Moreno JM, Manco M, Ortega F, Ricart W (2009) Study of circulating prohepcidin in association with insulin sensitivity and changing iron stores. J Clin Endocrinol Metab 94(3):982–988. CrossRefPubMedGoogle Scholar
  34. 34.
    Guo X, Zhou D, An P, Wu Q, Wang H, Wu A et al (2013) Associations between serum hepcidin, ferritin and Hb concentrations and type 2 diabetes risks in a Han Chinese population. Br J Nutr 110(12):2180–2185. CrossRefPubMedGoogle Scholar
  35. 35.
    Aregbesola A, Virtanen JK, Voutilainen S, Mursu J, Lagundoye A, Kauhanen J et al (2015) Serum ferritin and glucose homeostasis: change in the association by glycaemic state. Diabetes Metab Res Rev 31:507–514. CrossRefPubMedGoogle Scholar
  36. 36.
    Kim CH, Kim HK, Bae SJ, Park JY, Lee KU (2011) Association of elevated serum ferritin concentration with insulin resistance and impaired glucose metabolism in Korean men and women. Metabolism 60(3):414–420. CrossRefPubMedGoogle Scholar
  37. 37.
    Zheng X, Jiang T, Wu H, Zhu D, Wang L, Qi R et al (2011) Hepatic iron stores are increased as assessed by magnetic resonance imaging in a Chinese population with altered glucose homeostasis. Am J Clin Nutr 94:1012–1019. CrossRefPubMedGoogle Scholar
  38. 38.
    Rajpathak SN, Wylie-Rosett J, Gunter MJ, Negassa A, Kabat GC, Rohan TE et al (2009) Biomarkers of body iron stores and risk of developing type 2 diabetes. Diabetes Obes Metab 11(5):472–479. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Forouhi NG, Harding AH, Allison M, Sandhu MS, Welch A, Luben R, et al (2007) Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk Prospective Study 50(5):949–956Google Scholar
  40. 40.
    Zijp IM, Korver O, Tijburg LB (2000) Effect of tea and other dietary factors on iron absorption. Crit Rev Food Sci Nutr 40(5):371–398. CrossRefPubMedGoogle Scholar
  41. 41.
    Aimone-Gastin I (2006) Biochemical markers of iron status. Nephrol Ther 2:S321–S326PubMedGoogle Scholar
  42. 42.
    Aregbesola A, Voutilainen S, Virtanen JK, Mursu J, Tuomainen T (2013) Body iron stores and the risk of type 2 diabetes in middle-aged men. Euro J Endocrinol 169(2):247–253. CrossRefGoogle Scholar
  43. 43.
    Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD et al (2009) Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int 75:976–981. CrossRefPubMedGoogle Scholar
  44. 44.
    Tarng DC, Hung SC, Huang TP (2004) Effect of intravenous ascorbic acid medication on serum levels of soluble transferrin receptor in hemodialysis patients. J Am Soc Nephrol 15(9):2486–2493CrossRefPubMedGoogle Scholar
  45. 45.
    Ransohoff DF, Feinstein AR (1978) Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med 299(17):926–930CrossRefPubMedGoogle Scholar
  46. 46.
    Pepe MS, Fan J, Seymour CW, Li C, Huang Y, Feng Z (2012) Biases introduced by choosing controls to match risk factors of cases in biomarker research. Clin Chem 58(8):1242–1251. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Shayal K. Chand
    • 1
  • Ruma G. Singh
    • 1
  • Sayali A. Pendharkar
    • 1
  • Maxim S. Petrov
    • 1
  1. 1.Department of SurgeryUniversity of AucklandAucklandNew Zealand

Personalised recommendations