Biological Trace Element Research

, Volume 183, Issue 1, pp 9–15 | Cite as

Effect of Disturbances of Zinc and Copper on the Physical and Mental Health Status of Patients with Alcohol Dependence

  • M. Ordak
  • E. Bulska
  • K. Jablonka-Salach
  • A. Luciuk
  • M. Maj-Żurawska
  • H. Matsumoto
  • T. Nasierowski
  • M. Wojnar
  • J. Matras
  • E. Muszynska
  • M. Bujalska-Zadrozny


The concentrations of copper and zinc in the tissues of alcohol-addicted people can significantly correlate with the variables describing their mental state. Studies on the homeostasis of zinc in alcohol-dependent patients have often been characterized by low hypozincemia detection. This may be caused by a low content of zinc in blood serum (1%) compared to the average zinc level in the body. Unfortunately, most authors have identified extracellular zinc in their studies. In the available literature, data on the level of copper in patients suffering from alcohol dependence are inconsistent. Our study included 100 alcohol-addicted patients (the study group) and 50 healthy subjects (the control group). Mental state was measured using appropriate psychometric scales. We used inductively coupled plasma mass spectrometry (ICP-MS) to determine copper and zinc content. Our results confirm the purposefulness of the use of zinc concentration in erythrocytes as a diagnostic parameter for low zinc status in alcohol-dependent patients. Alcohol-dependent patients with reduced concentrations of zinc in erythrocytes/copper in blood plasma differed significantly from alcohol-dependent patients with normal concentrations in terms of clinical parameters. With regard to zinc in blood plasma and copper in erythrocytes, this situation has not been found. The clinical symptoms of hypozincemia and copper deficiency in patients addicted to alcohol usually relate to disorders in central nervous system functioning, and they result in a decreased quality of physical and mental life.


Zinc Copper Alcohol-dependent patients 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Werneke U, Turner T, Priebe S (2006) Complementary medicines in psychiatry: review of effectiveness and safety. Br J Psychiatry 188:109–121CrossRefPubMedGoogle Scholar
  2. 2.
    Etebary S, Nikseresht S, Sadeghipour HR, Zarrindast MR (2010) Postpartum depression and role of serum trace elements. Iran J Psychiatry 5:40–46PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10:377–385PubMedGoogle Scholar
  4. 4.
    Szewczyk B, Poleszak E, Sowa-Kucma M, Siwek M, Dudek D, Ryszewska-Pokraśniewicz B, Radziwoń-Zaleska M, Opoka W, Czekaj J, Pilc A, Nowak G (2008) Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep 60:588–599PubMedGoogle Scholar
  5. 5.
    Bhowmik D, Chiranjib KP, Kumar KPS (2010) A potential medicinal importance of zinc in human health and chronic disease. Int J Pharm Bio Sci 1:05–11Google Scholar
  6. 6.
    Fujiwara N, Iso H, Kitanaka N, Kitanaka J, Eguchi H, Ookawara T, Ozawa K, Shimoda D, Yoshihara S, Takemura M, Suzuki K (2006) Effects of copper metabolism on neurological functions in Wistar and Wilson’s disease model rats. Biochem Biophys Res Commun 349:1079–1086CrossRefPubMedGoogle Scholar
  7. 7.
    Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534CrossRefPubMedGoogle Scholar
  8. 8.
    Hagmeyer S, Haderspeck JC, Grabrucker AM (2015) Behavioral impairments in animal models for zinc deficiency. Front Behav Neurosci 8:443CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ponizovskiy PA, Gofman AG (2015) Depression in alcohol addicted patients. Zh Nevrol Psikhiatr Im SS Korsakova 115:146–150CrossRefGoogle Scholar
  10. 10.
    Schulte MT, Hser YI (2014) Substance use and associated health conditions throughout the lifespan. Public Health Rev 35:1–27CrossRefGoogle Scholar
  11. 11.
    Rotter I, Kosik-Bogacka D, Dołegowska B, Safranow K, Lubkowska A, Laszczyńska M (2015) Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Pub Health 12:3944–3961CrossRefGoogle Scholar
  12. 12.
    Choi JW, Kim SK (2005) Relationships of lead, copper, zinc, and cadmium levels versus hematopoiesis and iron parameters in healthy adolescents. Ann Clin Lab Sci 35:428–434PubMedGoogle Scholar
  13. 13.
    Pang Y, Applegate TJ (2007) Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poult Sci 86:531–537CrossRefPubMedGoogle Scholar
  14. 14.
    Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol 3:1–18Google Scholar
  15. 15.
    Shahsavari D, Ahmed Z, Karikkineth A, Williams R, Zigel C (2014) Zinc-deficiency acrodermatitis in a patient with chronic alcoholism and gastric bypass: a case report. J Community Hosp Intern Med Perspect 4:3Google Scholar
  16. 16.
    Morawska A, Król E, Gomółka A, Piekoszowski W, Kamenczak A (2003) Disturbances of zinc homeostasis among alcoholics. Prob Foren Sci 55:120–130Google Scholar
  17. 17.
    Goldfrank LR, Flomenbaum N (1981) (2006) Goldfrank’s toxicologic emergencies, 8th edn. McGraw-Hill Professional, New YorkGoogle Scholar
  18. 18.
    Kul M, Kara M, Unal F, Tuzun Z, Akbiyik F (2014) Serum copper and ceruloplasmin levels in children and adolescents with attention deficit hyperactivity disorder. Klinik Psikofarmakoloji Bulteni 24:139–145CrossRefGoogle Scholar
  19. 19.
    Kucharska-Mazur J, Samochowiec J, Czopek I, Olszewska M, Chlubek D (1998) The estimation of plasma concentrations of the selected ions and aminotransferases activity in blood serum of alcoholics during alcohol withdrawal and abstinence period. Biul Magnezol 3:69–74Google Scholar
  20. 20.
    Avşaroglu D, Ina TC, Demir M, Attila G, Acartürk E, EmreEvlice Y, Kayrin L (2005) Biochemical indicators and cardiac function tests in chronic alcohol abusers. Croat Med J 46:233–237PubMedGoogle Scholar
  21. 21.
    Rahelić D, Kujundzić M, Romić Z, Brkić K, Petrovecki M (2006) Serum concentration of zinc, copper, manganese and magnesium in patients with liver cirrhosis. Coll Antropol 30:523–528PubMedGoogle Scholar
  22. 22.
    Mizukami Y, Maruyama K, Nakagawa Y, Yokoyama A, Okuyama K, Takahashi H, Hosaki S (2001) Assessment of tasting disorder in alcoholics. Nihon Arukoru Yakubutsu Igakkai Zasshi 36:504–513PubMedGoogle Scholar
  23. 23.
    Westermeyer J, Yargic I, Thuras P (2004) Michigan assessment-screening test for alcohol and drugs (MAST/AD): evaluation in a clinical sample. Am J Addict 13:151–162CrossRefPubMedGoogle Scholar
  24. 24.
    Mohammadkhani P, Dobson KS, Amiri M, Hosseini GF (2010) Psychometric properties of the Brief Symptom Inventory in a sample of recovered Iranian depressed patients. Int J Clin Helth Psychol 10:541–551Google Scholar
  25. 25.
    Burholt V, Nash P (2011) Short Form 36 (SF-36) Health Survey Questionnaire: normative data for Wales. J Public Health 33:587–603CrossRefGoogle Scholar
  26. 26.
    Stanford MS, Mathias CW, Dougherty DW, Lake SL, Anderson NE, Patton JH (2009) Fifty years of the Barratt Impulsiveness Scale: an update and review. Pers Indiv Diff 47:385–395CrossRefGoogle Scholar
  27. 27.
    Hanna D, White R, Lyons K, McParland MC, Shannon C, Mulholland C (2011) The structure of the Beck Hopelessness Scale: a confirmatory factor analysis in UK students. Pers Indiv Diff 51:17–22CrossRefGoogle Scholar
  28. 28.
    Renner W (2002) A psychometric analysis of the NEO five-factor inventory in an Australian sample. Rev Psychol 9:25–31Google Scholar
  29. 29.
    Malon A, Brockmann C, Fijalkowska-Morawska J, Rob P, Maj-Zurawska M (2004) Ionized magnesium in erythrocytes—the bestmagnesium parametr to observe hypo- or hypermagnesemia. Clin Chim Acta 349:67–73CrossRefPubMedGoogle Scholar
  30. 30.
    Malon A, Wagner B, Bulska E, Maj-Zurawska M (2002) Comparison of the potentiometric, 3 1 P NMR and zero-point titration methods of determining ionized magnesium in erythrocytes. Anal Biochem 302:220–223CrossRefPubMedGoogle Scholar
  31. 31.
    Bulska E, Danko B, Dybczyński RS, Krata A, Kulisa K, Samczyński Z, Wojciechowski M (2012) Inductively coupled plasma mass spectrometry in comparison with neutron activation and ion chromatography with UV/VIS detection for the determination of lanthanides in plant materials. Talanta 97:303–311CrossRefPubMedGoogle Scholar
  32. 32.
    Hassabo AA, Alnaiem WM, Elbadry S, Turki IY (2011) An investigation on serum profiles of Cu and Zn in Sudanese goats raised on different management systems and geographical locations. J Sci Technol 12:ISSN:1605 – 427XGoogle Scholar
  33. 33.
    Guy E, Abraham MD, Jorge D, Flechas MD (2009) Effects of colloidal metallic silver in tablet form administered orally at 75mg/day for 2 months on various clinical and physiological parameters in six adult volunteers. Orig Internist 16:139–159Google Scholar
  34. 34.
    Bates CJ, Evans PH, Dardenne M, Prentice A, Lunn PG, Northrop-Clewes CA, Hoare S, Cole TJ, Horan SJ, Longman SC, Stirling D, Aggett PJ (1993) A trial of zinc supplementation in young rural Gambian children. Br J Nutr 69:243–255CrossRefPubMedGoogle Scholar
  35. 35.
    Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69CrossRefPubMedGoogle Scholar
  36. 36.
    Siwek M, Szewczyk B, Dudek D, Styczeń K, Sowa-Kućma M, Młyniec K, Siwek A, Witkowski L, Pochwat B, Nowak G (2013) Zinc as a marker of affective disorders. Pharmacol Rep 65:1512–1518CrossRefPubMedGoogle Scholar
  37. 37.
    Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. Biofactors 38:186–193CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cope EC, Levenson CW (2010) Role of zinc in the development and treatment of mood disorders. Curr Opin Clin Nutr Metab Care 13:685–689CrossRefPubMedGoogle Scholar
  39. 39.
    Russo AJ (2011) Analysis of plasma zinc and copper concentration, and perceived symptoms, in individuals with depression, post zinc and anti-oxidant therapy. Nutr Metab Insights 17:19–27Google Scholar
  40. 40.
    Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C (2014) Copper and copper proteins in Parkinson’s disease. Oxidative Med Cell Longev 2014:147251CrossRefGoogle Scholar
  41. 41.
    Rembach A, Hare DJ, Lind M, Fowler CJ, Cherny RA, McLean C, Bush AI, Masters CL, Roberts BR (2013) Decreased copper in Alzheimer’s disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis 2013:623241PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. Ordak
    • 1
    • 2
  • E. Bulska
    • 3
  • K. Jablonka-Salach
    • 3
  • A. Luciuk
    • 3
  • M. Maj-Żurawska
    • 3
  • H. Matsumoto
    • 1
  • T. Nasierowski
    • 1
  • M. Wojnar
    • 1
  • J. Matras
    • 2
  • E. Muszynska
    • 4
  • M. Bujalska-Zadrozny
    • 2
  1. 1.Department of PsychiatryMedical University of WarsawWarsawPoland
  2. 2.Department of Pharmacodynamics, Centre for Preclinical, Research and Technology (CePT)Medical University of WarsawWarsawPoland
  3. 3.Faculty of ChemistryBiological and Chemical Research Centre University of WarsawWarsawPoland
  4. 4.Department of General BiologyMedical University of BialystokBialystokPoland

Personalised recommendations