Advertisement

Biological Trace Element Research

, Volume 176, Issue 2, pp 258–269 | Cite as

Lead Quantification in Urine Samples of Athletes by Coupling DLLME with UV-Vis Spectrophotometry

  • Hakim Faraji
  • Masoumeh Helalizadeh
Article

Abstract

Urine lead level is one of the most employed measures of lead exposure and risk. The urine samples used in this study were obtained from ten healthy male cyclists. Dispersive liquid–liquid microextraction combined with ultraviolet and visible spectrophotometry was utilized for preconcentration, extraction, and determination of lead in urine samples. Optimization of the independent variables was carried out based on chemometric methods in three steps. According to the screening and optimization study, 133 μL of CCl4 (extracting solvent), 1.34 mL ethanol (dispersing solvent), pH 2.0, 0.00 % of salt, and 0.1 % O,O-diethyl dithiophosphoric (chelating agent) were used as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R 2 was 0.9991, and linearity range was 0.01–100 μg L−1. Precision was evaluated in terms of repeatability and intermediate precision, with relative standard deviations being <9.1 and <15.3 %, respectively. The accuracy was estimated using urine samples of cyclists as real samples and it was confirmed. The relative error of ≤5 % was considered significant in the method specificity study. The lead concentration mean for the cyclists was 3.79 μg L−1 in urine samples. As a result, the proposed method is a robust technique to quantify lead concentrations higher than 11.6 ng L−1 in urine samples.

Keywords

Dispersive liquid–liquid microextraction UV-Vis spectrophotometry Chemometrics Validation study Lead Urine samples of cyclists 

Notes

Acknowledgment

The authors are gratefully acknowledging the support of this work by the Islamic Azad University, Varamin-Pishva Branch.

Compliance with Ethical Standards

All the participants were informed about the purpose of the study and gave informed consent. Experimental procedures were approved by the Ethics Committee of Islamic Azad University, Varamin-Pishva Branch.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Supplementary material

12011_2016_844_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)
12011_2016_844_MOESM2_ESM.docx (13 kb)
ESM 2 (DOCX 12 kb)
12011_2016_844_MOESM3_ESM.docx (13 kb)
ESM 3 (DOCX 13 kb)

References

  1. 1.
    Wozniak K, Blasiak J (2003) In vitro genotoxicity of lead acetate: induction of single and double DNA strand breaks and DNA-protein cross-links. Mutat Res-Gen Tox En 535:127–139. doi: 10.1016/s1383-5718(02)00295-4 CrossRefGoogle Scholar
  2. 2.
    Rabinowitz MB (1991) Toxicokinetics of bone lead. Environ Health Perspect 91:33–37. doi: 10.1289/ehp.919133 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Llerena F, Maynar M, Barrientos G, Palomo R, Robles MC, Caballero MJ (2011) Comparison of urine toxic metals concentrations in athletes and in sedentary subjects living in the same area of Extremadura (Spain. Eur J Appl Physiol 112:3027–3031. doi: 10.1007/s00421-011-2276-6 CrossRefPubMedGoogle Scholar
  4. 4.
    Navarro-Moreno LG, Quintanar-Escorza MA, Gonzalez S, Mondragon R, Cerbon-Solorzano J, Valdes J, Calderon-Salinas JV (2009) Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells. Toxicol in Vitro 23:1298–1304. doi: 10.1016/j.tiv.2009.07.020 CrossRefPubMedGoogle Scholar
  5. 5.
    Juberg DR (2000) Lead and human health: an update. American council on science and health. 2nd edition, 5–11. http://www.acsh.org
  6. 6.
    Goyer RA (1996) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Global health risks (2009) Mortality and burden of disease attributable to selected major risks. World Health Organization, Geneva (http://www.who.int/healthinfo/global_burden_disease/ GlobalHealthRisks_report_full.pdf)
  8. 8.
    Zachariadis GA, Anthemidis AN, Bettas PG, Stratis JA (2002) Determination of lead by on-line solid phase extraction using a PTFE micro-column and flame atomic absorption spectrometry. Talanta 57:919–927. doi: 10.1016/S0039-9140(02)00132-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Chen ML, Wang JH (2007) New developments in flow injection/sequential injection on-line separation and preconcentration coupled with electrothermal atomic absorption spectrometry for trace metal analysis. Appl Spectrosc Rev 42:103–118. doi: 10.1080/05704920601184242 CrossRefGoogle Scholar
  10. 10.
    Xia L, Xuan L, Wu Y, Hu B, Chen R (2008) Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples. Spectrochim Acta B 63:1290–1296. doi: 10.1016/j.sab.2008.09.018 CrossRefGoogle Scholar
  11. 11.
    Aceto M, Abollino O, Bruzzoniti MC, Mentasti E, Sarzanini C, Melandrino M (2002) Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review. Food Addit Contam 19:126–133. doi: 10.1080/02652030110071336 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang JH, Hansen EH (2002) FI/SI on-line solvent extraction/back extraction preconcentration coupled to direct injection nebulization inductively coupled plasma mass spectrometry for determination of copper and lead. J Anal At Spectrom 17:1284–1289. doi: 10.1039/b204367j CrossRefGoogle Scholar
  13. 13.
    Alonso EV, Cordero MTS, Torres AGD, Pavon JMC (2006) Lead ultra-trace on-line preconcentration and determination using selective solid phase extraction and electrothermal atomic absorption spectrometry: applications in seawaters and biological samples. Anal Bioanal Chem 385:1178–1185. doi: 10.1007/s00216-006-0572-5 CrossRefGoogle Scholar
  14. 14.
    Pena-Pereira F, Lavilla I, Bendicho C (2009) Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochim Acta B 64:1–15. doi: 10.1016/j.sab.2008.10.042 CrossRefGoogle Scholar
  15. 15.
    Lemos VA, de Carvalho AL (2010) Determination of cadmium and lead in human biological samples by spectrometric techniques: a review. Environ Monit Assess 171:255–265. doi: 10.1007/s10661-009-1276-z CrossRefPubMedGoogle Scholar
  16. 16.
    Chen J, Xiao S, Wu X, Fang K, Liu W (2005) Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta 67:992–996. doi: 10.1016/j.talanta.2005.04.029 CrossRefPubMedGoogle Scholar
  17. 17.
    Rivas RE, Lopez-Garcıa I, Hernandez-Cordoba M (2009) Determination of traces of lead and cadmium using dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry. Microchim Acta 166:355–361. doi: 10.1007/s00604-009-0206-7 CrossRefGoogle Scholar
  18. 18.
    Lopez-Garcıa I, Vicente-Martınez Y, Hernandez-Cordoba M (2013) Determination of lead and cadmium using an ionic liquid and dispersive liquid–liquid microextraction followed by electrothermal atomic absorption spectrometry. Talanta 110:46–52. doi: 10.1016/j.talanta.2013.02.015 CrossRefPubMedGoogle Scholar
  19. 19.
    Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:1–9. doi: 10.1016/j.chroma.2006.03.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Ahmad W, Al-Sibaai AA, Bashammakh AS, Alwael H, El-Shahawi MS (2015) Recent advances in dispersive liquid-liquid microextraction for pesticide analysis. TrAC-Trend Anal Chem 72:181–192. doi: 10.1016/j.trac.2015.04.022 CrossRefGoogle Scholar
  21. 21.
    Andruch V, Balogh IS, Kocúrová L, Šandrejová J (2013) Five years of dispersive liquid–liquid microextraction. Appl Spectrosc Rev 48:161–259. doi: 10.1080/05704928.2012.697087 CrossRefGoogle Scholar
  22. 22.
    Pena-Pereira F, Costas-Mora I, Romero V, Lavilla I, Bendicho C (2011) Advances in miniaturized UV-Vis spectrometric systems. TrAC-Trend Anal Chem 30:1637–1648. doi: 10.1016/j.trac.2011.04.018 CrossRefGoogle Scholar
  23. 23.
    Shokoufi N, Shemirani F, Assadi Y (2007) Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal Chim Acta 597:349–356. doi: 10.1016/j.aca.2007.07.009 CrossRefPubMedGoogle Scholar
  24. 24.
    Gharehbaghi M, Shemirani F, Baghdadi M (2009) Dispersive liquid–liquid microextraction based on ionic liquid and spectrophotometric determination of mercury in water samples. Int J Environ An Ch 89:21–33. doi: 10.1080/03067310802272994 CrossRefGoogle Scholar
  25. 25.
    Rahnama R, Jojadeh ZC, Jamali MR (2012) Spectrophotometric determination of trace levels of nickel in water samples after dispersive liquid liquid microextraction using 2,2′-furildioxime as the complexing agent. Acta Chim Slov 59:641–647PubMedGoogle Scholar
  26. 26.
    Rahnama Kozani R, Mofid-Nakhaei J, Jamali MR (2013) Rapid spectrophotometric determination of trace amounts of palladium in water samples after dispersive liquid-liquid microextraction. Environ Monit Assess 185:6531–6537. doi: 10.1007/s10661-012-3044-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Liao X, Liang B, Li Z, Li Y (2011) A simple, rapid and sensitive ultraviolet-visible spectrophotometric technique for the determination of ultra-trace copper based on injection-ultrasound-assisted dispersive liquid-liquid microextraction. Analyst 136:4580–4586. doi: 10.1039/c1an15502d CrossRefPubMedGoogle Scholar
  28. 28.
    Corazza MZ, Pires IM, Diniz KM, Segatelli MG, Tarley CR (2015) A facile vortex-assisted dispersive liquid-liquid microextraction method for the determination of uranyl ion at low levels by spectrophotometry. Bull Environ Contam Toxicol 95:215–220. doi: 10.1007/s00128-015-1539-z CrossRefPubMedGoogle Scholar
  29. 29.
    Yousefi SM, Shemirani F (2013) Selective and sensitive speciation analysis of Cr(VI) and Cr(III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid–liquid microextraction. J Hazard Mater 254–255:134–140. doi: 10.1016/j.jhazmat.2013.03.025 CrossRefPubMedGoogle Scholar
  30. 30.
    Niazi A, Khorshidi N, Ghaemmaghami P (2015) Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods. Spectrochim Acta A 135:69–75. doi: 10.1016/j.saa.2014.06.148 CrossRefGoogle Scholar
  31. 31.
    Biparva P, Ranjbari E, Hadjmohammadi MR (2010) Application of dispersive liquid-liquid microextraction and spectrophotometric detection to the rapid determination of rhodamine 6G in industrial effluents. Anal Chim Acta 674:206–210. doi: 10.1016/j.aca.2010.06.024 CrossRefPubMedGoogle Scholar
  32. 32.
    Bulatov A, Medinskaia K, Aseeva D, Garmonov S, Moskvin L (2015) Determination of antipyrine in saliva using the dispersive liquid-liquid microextraction based on a stepwise injection system. Talanta 133:66–70. doi: 10.1016/j.talanta.2014.05.064 CrossRefPubMedGoogle Scholar
  33. 33.
    Rastegarzadeh S, Pourreza N, Larki A (2013) Dispersive liquid–liquid microextraction of thiram followed by microvolume UV–vis spectrophotometric determination. Spectrochim Acta A 114:46–50. doi: 10.1016/j.saa.2013.05.020 CrossRefGoogle Scholar
  34. 34.
    Rusnáková L, Andruch V, Balogh IS, Škrlíková J (2011) A dispersive liquid–liquid microextraction procedure for determination of boron in water after ultrasound-assisted conversion to tetrafluoroborate. Talanta 85:541–545. doi: 10.1016/j.talanta.2011.04.030 CrossRefPubMedGoogle Scholar
  35. 35.
    Dehghani Mohammad Abadi M, Ashraf N, Chamsaz M, Shemirani F (2012) An overview of liquid phase microextraction approaches combined with UV-Vis spectrophotometry. Talanta 99:1–12. doi: 10.1016/j.talanta.2012.05.027 CrossRefPubMedGoogle Scholar
  36. 36.
    Faraji H, Helalizadeh M (2010) Determination of organochlorine pesticides in river water using dispersive liquid-liquid microextraction and gas chromatography-electron capture detection. Int J Environ An Ch 90:869–879. doi: 10.1080/03067310903267315 CrossRefGoogle Scholar
  37. 37.
    Kokya TA, Farhadi K (2009) Optimization of dispersive liquid–liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy. J Hazard Mater 169:726–733. doi: 10.1016/j.jhazmat.2009.04.005 CrossRefPubMedGoogle Scholar
  38. 38.
    Karimi M, Sereshti H, Samadi S, Parastar H (2010) Optimization of dispersive liquid–liquid microextraction and improvement of detection limit of methyl tert-butyl ether in water with the aid of chemometrics. J Chromatogr A 1217:7017–7023. doi: 10.1016/j.chroma.2010.09.015 CrossRefPubMedGoogle Scholar
  39. 39.
    ICH Harmonized Tripartite Guideline (2005) Validation of Analytical Procedures: Text and Methodology Q2 (R1), International Conference of Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human UseGoogle Scholar
  40. 40.
    IUPAC (2002) Harmonized guidelines for single-laboratory validation of method of analyses (IUPAC technical report). Pure Appl Chem 74:835. doi: 10.1351/pac200274050835 Google Scholar
  41. 41.
    Olivieri AC (2015) Practical guidelines for reporting results in single- and multi-component analytical calibration: a tutorial. Anal Chim Acta 868:10–22. doi: 10.1016/j.aca.2015.01.017 CrossRefPubMedGoogle Scholar
  42. 42.
    Analytical Methods Committee (1994) Is my calibration linear? Analyst 119:2363–2366. doi: 10.1039/an9941902363 CrossRefGoogle Scholar
  43. 43.
    Magnusson B, Örnemark U (2014) Eurachem guide: the fitness for purpose of analytical Methods—a laboratory guide to method validation and related topics, 2nd ed., Eurachem, Teddington, Available from www.eurachem.org. ISBN 978–91–87461-59-0
  44. 44.
    Shah VP, Midha KK, Dighe S, McGilveray IJ, et al. (1992) Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. Int J Pharm 82:1–7. doi: 10.1016/0378-5173(92)90065-a CrossRefGoogle Scholar
  45. 45.
    Mansilha C, Melo A, Rebelo H, Ferreira IMPLVO, Pinho O, Domingues V, Pinho C, Gameiro P (2010) Quantification of endocrine disruptors and pesticides in water by gas chromatography–tandem mass spectrometry. Method validation using weighted linear regression schemes. J Chromatogr A 1217:6681–6691. doi: 10.1016/j.chroma.2010.05.005 CrossRefPubMedGoogle Scholar
  46. 46.
    Bergdahl IA, Schutz A, Gerhardsson L, Jensen A, Skerfving S (1997) Lead concentrations in human plasma, urine and whole blood. Scand J Work Environ Health 23:359–363. doi: 10.5271/sjweh.232 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science, Varamin-Pishva BranchIslamic Azad UniversityVaraminIran
  2. 2.Department of Exercise Physiology, Sport Medicine Research CenterSport Sciences Research InstituteTehranIran

Personalised recommendations