Biological Trace Element Research

, Volume 176, Issue 2, pp 416–428 | Cite as

Eco-Friendly Synthesis of Silver Nanoparticles Through Economical Methods and Assessment of Toxicity Through Oxidative Stress Analysis in the Labeo Rohita

  • Muhammad Saleem Khan
  • Naureen Aziz Qureshi
  • Farhat Jabeen
  • Muhammad Saleem Asghar
  • Muhammad Shakeel
  • Muhammad Fakhar -e -Alam


The physicochemical and biological properties of metals change as the particles are reduced to nanoscale. This ability increases the application of nanoparticles in commercial and medical industry. Keeping in view this importance, Silver nanoparticles (Ag-NPs) were synthesized by reduction methods using formaldehyde as reducing agent in the chemical route and lemon extracts in the biological route. The scanning electron microscope (SEM) images of nanoparticles suggested that the particles were either agglomerated or spherical in shape with mean diameter of 16.59 nm in the chemical route and 42.93 nm in the biological route. The particles were between 5 and 80 nm with maximum frequency between 5 and 20 nm in the chemical route and between 5 and 100 nm with maximum frequency between 15 and 50 nm in the biological method. In the second phase of the study, the effect of Ag-NPs on the oxidative stress was studied. For this purpose, Labeo rohita (20 ± 2.5 g in weight and 12 ± 1.4 cm in length) were involved. Six treatments were applied in three replicates having five fishes in each replicate. The first treatment was used as control group, and the other five treatments were exposed to either 10 or 20 or 30 or 45 or 55 mg L−1 of Ag-NPs for 28 days. The treatment of Ag-NPs caused oxidative stress in the liver and gill tissues, which induced alterations in the activities of antioxidant enzymes. The level of catalase (CAT) was decreased in response to Ag-NPs concentration in dose-dependent manner. Ag-NPs treatment stimulated the liver and gill tissues to significantly increase the level of superoxide dismutase (SOD), which might be due to synthesis of SOD and addition in the pre-existing SOD level. The level decreases again due to depletion of SOD level. There was a sharp decline in the activities of glutathione S-transferase (GST) in both gills and liver tissues even at lower concentration, and this decrease in the GST activity was significantly different at each treatment after 28 days of treatment except 20 mg L−1. The malondialdehyde (MDA) levels of gills and liver tissues were increased with the increase in the concentration. The elevated levels of glutathione (GSH) showed that the liver started defensive mechanism against the oxyradicals. This study finds out the cheap eco-friendly and economical method of Ag-NP synthesis. It is further revealed that Ag-NPs caused oxidative stress in the aquatic animals if exposure occurs at high concentrations.


Synthesis Silver Nanoparticles Oxidative stress Labeo rohita 


  1. 1.
    Jovanović B, Anastasova L, Rowe EW, Zhang Y, Clapp AR, Palić D (2011) Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf 74(4):675–683. doi: 10.1016/j.ecoenv.2010.10.017 CrossRefPubMedGoogle Scholar
  2. 2.
    Woodrow Wilson d Woodrow Wilson d (2016) Nanotechnology consumer product inventory [cited 2016 28 April]. Available from:
  3. 3.
    Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. doi: 10.1021/es103316q CrossRefPubMedGoogle Scholar
  4. 4.
    Hurst SJ, Lytton-Jean AK, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78(24):8313–8318. doi: 10.1021/ac0613582 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  6. 6.
    Tran QH, Le A-T (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Neural Sci Nanosci Nanotechnol 4(3):033001. doi: 10.1088/2043-6262/4/3/033001 CrossRefGoogle Scholar
  7. 7.
    Reddy G, Joy J, Mitra T, Shabnam S, Shilpa T (2012) Nanosilver review. Int J Adv Pharm 2:9–15Google Scholar
  8. 8.
    Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262. doi: 10.1016/j.nano.2009.07.002 PubMedGoogle Scholar
  9. 9.
    Ahmed S, Ahmad M, Swami BL, Ikram S (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. doi: 10.1016/j.jare.2015.02.007 Google Scholar
  10. 10.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi: 10.1021/es7032718 CrossRefPubMedGoogle Scholar
  11. 11.
    Taju G, Majeed SA, Nambi K, Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Pharmacol Toxicol 161:41–52. doi: 10.1016/j.cbpc.2014.01.007 CrossRefGoogle Scholar
  12. 12.
    Awasthi KK, Awasthi A, Bhoot N, John P, Sharma SK, Awasthi K (2013) Antimicrobial properties of electro-chemically stabilized organo-metallic thin films. Adv Electrochem 1(1):42–47. doi: 10.1166/adel.2013.1013 CrossRefGoogle Scholar
  13. 13.
    Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI et al (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi: 10.1080/17435390902725914 CrossRefGoogle Scholar
  14. 14.
    Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2):396–409. doi: 10.1016/j.scitotenv.2007.10.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Smith IC, Carson BL (1977) Trace metals in the environment, vol 1. Arbor Science Publishers, USAGoogle Scholar
  16. 16.
    Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. doi: 10.1021/es2037405 CrossRefPubMedGoogle Scholar
  17. 17.
    Howe P, Dobson S (2002) Silver and silver compounds: environmental aspects. Concise International Chemical Assessment Document 44. World Health Organization, GenevaGoogle Scholar
  18. 18.
    Khan S, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A (2015) Toxicity of silver nanoparticles in fish: a critical review. J Bio Environ Sci 6(5):211–227Google Scholar
  19. 19.
    Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585. doi: 10.1093/annhyg/mei019 PubMedGoogle Scholar
  20. 20.
    Yin L, Cheng Y, Espinasse B, Colman BP et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi: 10.1021/es103995x CrossRefPubMedGoogle Scholar
  21. 21.
    Luoma SN, Rainbow PS, Luoma S (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int 1–16. doi: 10.1155/2015/893049
  23. 23.
    Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983. doi: 10.1016/j.tiv.2005.06.034 CrossRefPubMedGoogle Scholar
  24. 24.
    Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19(23):235104. doi: 10.1088/0957-4484/19/23/235104 CrossRefPubMedGoogle Scholar
  25. 25.
    Ali D (2014) Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L. Biol Trace Elem Res 162(1–3):333–341. doi: 10.1007/s12011-014-0158-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419. doi: 10.1093/toxsci/kfi256 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Park B, Martin P, Harris C, Guest R, Whittingham A, Jenkinson P, Handley J (2007) Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™—a nanoparticulate cerium oxide diesel fuel additive. Part Fibre Toxicol 4(12):4–12. doi: 10.1186/1743-8977-4-12 Google Scholar
  28. 28.
    Kumar PSS, Sivakumar R, Anandan S, Madhavan J, Maruthamuthu P, Ashokkumar M (2008) Photocatalytic degradation of Acid Red 88 using Au–TiO 2 nanoparticles in aqueous solutions. Water Res 42(19):4878–4884. doi: 10.1016/j.watres.2008.09.027 CrossRefGoogle Scholar
  29. 29.
    Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100. doi: 10.1016/j.toxlet.2010.12.010 CrossRefPubMedGoogle Scholar
  30. 30.
    Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848. doi: 10.1016/j.cca.2010.08.016 CrossRefPubMedGoogle Scholar
  31. 31.
    Arora S, Jain J, Rajwade J, Paknikar K (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236(3):310–318. doi: 10.1016/j.taap.2009.02.020 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhornik E, Baranova L, Drozd E, Sudas M et al (2014) Silver nanoparticles induce lipid peroxidation and morphological changes in human lymphocytes surface. Biophysics 59(3):380–386. doi: 10.1134/s0006350914030282 CrossRefGoogle Scholar
  33. 33.
    Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1):33–37. doi: 10.1016/j.tox.2008.09.025 CrossRefPubMedGoogle Scholar
  34. 34.
    Sung JH, Ji JH, Yoon JU, Kim DS et al (2008) Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6):567–574. doi: 10.1080/08958370701874671 CrossRefPubMedGoogle Scholar
  35. 35.
    Devi GP, Ahmed KBA, Varsha MS, Shrijha B, Lal KS, Anbazhagan V, Thiagarajan R (2015) Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–156. doi: 10.1016/j.aquatox.2014.11.007 CrossRefPubMedGoogle Scholar
  36. 36.
    Kataria N, Kataria AK, Pandey N, Gupta P (2010) Serum biomarkers of physiological defense against reactive oxygen species during environmental stress in Indian dromedaries. HVM Bioflux 2(2):55–60Google Scholar
  37. 37.
    Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(11):1–17. doi: 10.1186/1743-8977-11-11 Google Scholar
  38. 38.
    Monfared AL, Soltani S (2013) Effects of silver nanoparticles administration on the liver of rainbow trout (Oncorhynchus mykiss): histological and biochemical studies. Eur J Exp Biol 3(2):285–289Google Scholar
  39. 39.
    Reddy TK, Reddy SJ, Prasad T (2013) Effect of silver nanoparticles on energy metabolism in selected tissues of Aeromonas hydrophila infected Indian major Carp, Catla catla. IOSR J Pharm 3:49–55. doi: 10.9790/3013-31204955 Google Scholar
  40. 40.
    Rajkumar K, Kanipandian N, Thirumurugan R (2015) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 1–11. doi: 10.1007/s13204-015-0417-7
  41. 41.
    Hsu SL-C, Wu R-T (2011) Preparation of silver nanoparticle with different particle sizes for low-temperature sintering. In: 2010 International Conference on Nanotechnology and Biosensors IPCBEEGoogle Scholar
  42. 42.
    Rao R, Møller IM (2011) Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics 11(21):4166–4173. doi: 10.1002/pmic.201100223 CrossRefPubMedGoogle Scholar
  43. 43.
    Abreu RD, Morais CA (2010) Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner Eng 23(6):536–540. doi: 10.1016/j.mineng.2010.03.010 CrossRefGoogle Scholar
  44. 44.
    Payá M, Halliwell B, Hoult J (1992) Interactions of a series of coumarins with reactive oxygen species: scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem Pharmacol 44(2):205–214. doi: 10.1016/0006-2952(92)90002-z CrossRefPubMedGoogle Scholar
  45. 45.
    Peixoto AL, Pereira-Moura MVL (2008) A new genus of Monimiaceae from the Atlantic Coastal Forest in south-eastern Brazil. Kew Bull 63(1):137–141. doi: 10.1007/s12225-007-9004-8 CrossRefGoogle Scholar
  46. 46.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139PubMedGoogle Scholar
  47. 47.
    Jollow D, Mitchell J, Na Z, Gillette J (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169. doi: 10.1159/000136485 CrossRefPubMedGoogle Scholar
  48. 48.
    Bergmeyer H-U (2012) Methods of enzymatic analysis. Elsevier, BurlingtonGoogle Scholar
  49. 49.
    Wilchek M, Bayer EA (1990) Introduction to avidin-biotin technology. Methods Enzymol 184:5–13. doi: 10.1016/0076-6879(90)84256-g CrossRefPubMedGoogle Scholar
  50. 50.
    Kanipandian N, Thirumurugan R (2014) A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind Crops Prod 55:1–10. doi: 10.1016/j.indcrop.2014.01.042 CrossRefGoogle Scholar
  51. 51.
    Krishnan R, Maru GB (2006) Isolation and analyses of polymeric polyphenol fractions from black tea. Food Chem 94(3):331–340. doi: 10.1016/j.foodchem.2004.11.039 CrossRefGoogle Scholar
  52. 52.
    Paulraj P, Janaki N, Sandhya S, Pandian K (2011) Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids Surf A Physicochem Eng Asp 377(1):28–34. doi: 10.1016/j.colsurfa.2010.12.001 CrossRefGoogle Scholar
  53. 53.
    Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R (2013) A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids Surf A Physicochem Eng Asp 439:184–192. doi: 10.1016/j.colsurfa.2013.04.011 CrossRefGoogle Scholar
  54. 54.
    Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T (2011) Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnol 9(43):2–8. doi: 10.1186/1477-3155-9-43 Google Scholar
  55. 55.
    Satyavani K, Gurudeeban S, Ramanathan T (2014) Influence of leaf broth concentration of Excoecaria agallocha as a process variable in silver nanoparticles synthesis. J Nanomedicine Res 1(2):00011. doi: 10.15406/jnmr.2014.01.00011
  56. 56.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800. doi: 10.1021/la9502711 CrossRefGoogle Scholar
  57. 57.
    Bar‐Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910. doi: 10.1002/smll.200801716 CrossRefPubMedGoogle Scholar
  58. 58.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi: 10.1126/science.1114397 CrossRefPubMedGoogle Scholar
  59. 59.
    Simonian N, Coyle J (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36(1):83–106. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  60. 60.
    Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. doi: 10.1016/s1382-6689(02)00126-6 CrossRefPubMedGoogle Scholar
  61. 61.
    Khan MS, Jabeen F, Asghar MS, Qureshi NA, Shakeel M, Noureen A, Shabbir S (2015) Role of nao-ceria in the amelioration of oxidative stress: current and future applications in medicine. Int J Biosci 6(8):89–109. doi: 10.12692/ijb/6.8.89-109 CrossRefGoogle Scholar
  62. 62.
    Thapa B, Walia A (2007) Liver function tests and their interpretation. Indian J Pediatr 74(7):663–671CrossRefPubMedGoogle Scholar
  63. 63.
    de Miranda Cabral Gontijo AM, Barreto RE, Speit G, Valenzuela Reyes VA, Volpato GL, Favero Salvadori DM (2003) Anesthesia of fish with benzocaine does not interfere with comet assay results. Mutat Res Genet Toxicol Environ Mutagen 534(1):165–172. doi: 10.1016/s1383-5718(02)00276-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Muhammad Saleem Khan
    • 1
  • Naureen Aziz Qureshi
    • 2
  • Farhat Jabeen
    • 1
  • Muhammad Saleem Asghar
    • 1
  • Muhammad Shakeel
    • 1
  • Muhammad Fakhar -e -Alam
    • 3
  1. 1.Department of ZoologyGovernment College UniversityFaisalabadPakistan
  2. 2.Government College Women UniversityFaisalabadPakistan
  3. 3.Department of PhysicsGovernment College UniversityFaisalabadPakistan

Personalised recommendations