Skip to main content
Log in

Effects of Zinc Transporter on Differentiation of Bone Marrow Mesenchymal Stem Cells to Osteoblasts

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

ZnT:

Zinc transporter

D-MEM:

D-minimal essential medium

FITC:

Fluorescein isothiocyanate

PBS:

Phosphate-buffered saline

TBS:

Tris-buffered saline

PI:

Propidium iodide

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

References

  1. Sonomoto K, Yamaoka K, Oshita K et al (2012) Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum 64(10):3355–3363

    Article  PubMed  CAS  Google Scholar 

  2. Buckley CT, Vinardell T, Kelly DJ (2010) Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes. Osteoarthr Cartil 18(10):1345–1354

    Article  PubMed  CAS  Google Scholar 

  3. Janeczek Portalska K, Leferink A, Groen N et al (2012) Endothelial differentiation of mesenchymal stromal cells. PLoS One 7(10):e46842

    Article  PubMed  Google Scholar 

  4. Scheller EL, Song J, Dishowitz MI et al (2010) Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells 28(6):1071–1080

    Article  PubMed  CAS  Google Scholar 

  5. Shen Y, Feng Z, Lin C et al (2012) An oligodeoxynucleotide that induces differentiation of bone marrow mesenchymal stem cells to osteoblasts in vitro and reduces alveolar bone loss in rats with periodontitis. Int J Mol Sci 13(3):2877–2892

    Article  PubMed  CAS  Google Scholar 

  6. Fukunaka A, Kambe T (2010) Mechanism of zinc transport by zinc transporters, ZnT and ZIP. Seikagaku 82(1):30–34

    PubMed  CAS  Google Scholar 

  7. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465(1–2):190–8

    PubMed  CAS  Google Scholar 

  8. Kambe T (2012) Molecular architecture and function of ZnT transporters. Curr Top Membr 69:199–220

    Article  PubMed  CAS  Google Scholar 

  9. Du J, Miura E, Robischon M, Martinez C et al (2011) The populus class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One. doi:10.1371/journal.pone.0017458

    Google Scholar 

  10. Baima S, Possenti M, Matteucci A et al (2001) The arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126(2):643–655

    Article  PubMed  CAS  Google Scholar 

  11. Zhang L, Chan C (2010) Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J Vis Exp. doi:10.3791/1852

    Google Scholar 

  12. Li B, Wang XY, Tian Z et al (2010) Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy 12(3):326–331

    Article  PubMed  CAS  Google Scholar 

  13. Mostafa NZ, Fitzsimmons R, Major PW et al (2012) Osteogenic differentiation of human mesenchymal stem cells cultured with dexamethasone, vitamin D3, basic fibroblast growth factor, and bone morphogenetic protein-2. Connect Tissue Res 53(2):117–131

    Article  PubMed  CAS  Google Scholar 

  14. Olson DJ, Papkoff J (1994) Regulated expression of Wnt family members during proliferation of C57 mg mammary cells. Cell Growth Differ 5(2):197–206

    PubMed  CAS  Google Scholar 

  15. Caverzasio J, Manen D (2007) Essential role of Wnt3a-mediated activation of mitogen-activated protein kinase p38 for the stimulation of alkaline phosphatase activity and matrix mineralization in C3H10T1/2 mesenchymal cells. Endocrinology 148(11):5323–5330

    Article  PubMed  CAS  Google Scholar 

  16. Shi Y, Xia YY, Wang L et al (2012) Neural cell adhesion molecule modulates mesenchymal stromal cell migration via activation of MAPK/ERK signaling. Exp Cell Res 318(17):2257–67

    Article  PubMed  CAS  Google Scholar 

  17. Ortega JA, Alcántara S (2010) BDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration. Cereb Cortex 20(9):2132–2144

    Article  PubMed  Google Scholar 

  18. Iacono MV (2007) Osteoporosis: a national public health priority. J Perianesth Nurs 22(3):175–180

    Article  PubMed  Google Scholar 

  19. Peters BS, Martini LA (2010) Nutritional aspects of the prevention and treatment of osteoporosis. Arq Bras Endocrinol Metabol 54(2):179–185

    Article  PubMed  Google Scholar 

  20. Ozbaş H, Tutgun Onrat S, Ozdamar K (2012) Genetic and environmental factors in human osteoporosis. Mol Biol Rep 39(12):11289–11296

    Article  PubMed  Google Scholar 

  21. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–34

    Article  PubMed  Google Scholar 

  22. Bajpai VK, Mistriotis P, Andreadis ST (2012) Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Res 8(1):74–84

    Article  PubMed  CAS  Google Scholar 

  23. Kawakubo A, Matsunaga T, Ishizaki H (2011) Zinc as an essential trace element in the acceleration of matrix vesicles-mediated mineral deposition. Microsc Res Tech 74(12):1161–1165

    Article  PubMed  CAS  Google Scholar 

  24. Ozcelik D, Nazıroglu M, Tunçdemir M et al (2012) Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 150(1–3):342–349

    Article  PubMed  Google Scholar 

  25. Yamaguchi M (2012) Nutritional factors and bone homeostasis: synergistic effect with zinc and genistein in osteogenesis. Mol Cell Biochem 366(1–2):201–221

    Article  PubMed  CAS  Google Scholar 

  26. Kanno S, Anuradha CD, Hirano S (2001) Localization of zinc after in vitro mineralization in osteoblastic cells. Biol Trace Elem Res 83(1):39–47

    Article  PubMed  CAS  Google Scholar 

  27. Henriques R, Jásik J, Klein M et al (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50(4–5):587–597

    Article  PubMed  CAS  Google Scholar 

  28. Ryu MS, Lichten LA, Liuzzi JP et al (2008) Zinc transporters ZnT1 (Slc30a1), Zip8 (Slc39a8), and Zip10 (Slc39a10) in mouse red blood cells are differentially regulated during erythroid development and by dietary zinc deficiency. J Nutr 138(11):2076–2083

    Article  PubMed  CAS  Google Scholar 

  29. Lopez V, Kelleher SL (2009) Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem J 1:43–52

    Article  Google Scholar 

  30. Smidt K, Rungby J (2012) ZnT3: a zinc transporter active in several organs. Biometals 25(1):1–8

    Article  PubMed  CAS  Google Scholar 

  31. McCormick NH, Kelleher SL (2012) ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol 303(3):C291–C297

    Article  PubMed  CAS  Google Scholar 

  32. Suzuki T, Ishihara K, Migaki H et al (2005) Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J Biol Chem 280(35):30956–62

    Article  PubMed  CAS  Google Scholar 

  33. Howson JM, Krause S, Stevens H et al (2012) Genetic association of zinc transporter 8 (ZnT8) autoantibodies in type 1 diabetes cases. Diabetologia 7:1978–1984

    Article  Google Scholar 

  34. Lutz W, Burritt MF, Nixon DE et al (2000) Zinc increases the activity of vitamin D-dependent promoters in osteoblasts. Biochem Biophys Res Commun 271(1):1–7

    Article  PubMed  CAS  Google Scholar 

  35. Seo HJ, Cho YE, Kim T et al (2010) Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 4(5):356–361

    Article  PubMed  CAS  Google Scholar 

  36. Tang Z, Sahu SN, Khadeer MA et al (2006) Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 38(2):181–198

    Article  PubMed  CAS  Google Scholar 

  37. Datta NS, Kolailat R, Fite A et al (2010) Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell Signal 22(3):457–466

    Article  PubMed  CAS  Google Scholar 

  38. Rudolf E (2008) Increased uptake of zinc in malignant cells is associated with enhanced activation of MAPK signaling and P53-dependent cell injury. Acta Medica (Hradec Kralove) 51(1):43–49

    CAS  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yan, F., Yang, WL. et al. Effects of Zinc Transporter on Differentiation of Bone Marrow Mesenchymal Stem Cells to Osteoblasts. Biol Trace Elem Res 154, 234–243 (2013). https://doi.org/10.1007/s12011-013-9683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9683-y

Keywords

Navigation