Skip to main content
Log in

Oxidative Stress Induced by Cadmium in the C6 Cell Line: Role of Copper and Zinc

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this report, we have investigated the role of copper (Cu) and zinc (Zn) in oxidative stress induced by cadmium (Cd) in C6 cells. Cells were exposed to 20 μM Cd, 500 μM Cu, and 450 μM Zn for 24 h. Then, toxic effects, cellular metals levels, oxidative stress parameters, cell death, as well as DNA damage were evaluated. Cd induced an increase in cellular Cd, Cu, and Zn levels. This results not only in the inhibition of GSH-Px, GRase, CAT, and SOD activities but also in ROS overproduction, oxidative damage, and apoptotic cell death not related to Cu and Zn mechanisms. The thiol groups and GSH levels decreased, whereas the lipid peroxidation and DNA damage increased. The toxicity of Zn results from the imbalance between the inhibition of antioxidant activities and the induction of MT synthesis. The increase in Cu and Zn levels could be explained by the disruption of specific transporter activities, Cd interference with signaling pathways, and metal displacement. Our results suggest that the alteration of Cu and Zn homeostasis is involved in the oxidative stress induced by Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAT:

Catalase

Cd:

Cadmium

Cu:

Copper

Zn:

Zinc

FBS:

Fetal bovine serum

GSH-Px:

Glutathione peroxydase

GRase:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxized glutathione

MDA:

Malondialdehyde

MT:

Metallothioneins

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

ROS:

Reactive oxygen species

DMEM:

Dulbecco’s modified Eagle’s medium

BCA:

Bicinchoninic acid

BHT:

3,5-Di-tert-4butylhydroxytoluene

DMSO:

Dimethyl sulfoxide

DTNB:

5,5′-Dithionitrobenzoic acid

EDTA:

Ethylenediamine tetraacetic acid

NADPH:

Nicotinamide dinucleotide phosphate

PBS:

Phosphate-buffered saline

TBARs:

Thiobarbituric acid reactants

TNB:

5-Thio-2-nitrobenzoic acid

ABTS:

2,2′-Azino-di-[3-ethylbenzthiazoline-sulfonate(6)]

References

  1. Latinwo LM, Badisa VL, Ikediobi CO et al (2006) Effect of cadmium-induced oxidative stress on antioxidative enzymes in mitochondria and cytoplasm of CRL-1439 rat liver cells. Int J Mol Med 18:477–481

    PubMed  CAS  Google Scholar 

  2. Barazani O, Dudai N, Khadka UR et al (2004) Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. Chemosphere 57:1213–1218

    Article  PubMed  CAS  Google Scholar 

  3. Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  5. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress. Part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  PubMed  CAS  Google Scholar 

  6. Bravard A, Vacher M, Gouget B et al (2006) Redox regulation of human OGG1 activity in response to cellular oxidative stress. Mol Cell Biol 26:7430–7436

    Article  PubMed  CAS  Google Scholar 

  7. Shih CM, Ko WC, Wu JS et al (2004) Mediating of caspase-independent apoptosis by cadmium through the mitochondria–ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384–397

    Article  PubMed  CAS  Google Scholar 

  8. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148

    Article  PubMed  CAS  Google Scholar 

  9. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106:750–757

    Article  PubMed  CAS  Google Scholar 

  10. Slamon ND, Mead C, Morgan C et al (2005) The involvement of calcium in the protective and toxic (nonlinear) responses of rodent and human astroglial cells. Nonlinearity Biol Toxicol Med 3:79–95

    Article  PubMed  CAS  Google Scholar 

  11. Xu B, Chen S, Luo Y et al (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 6:e19052

    Article  PubMed  CAS  Google Scholar 

  12. Southon A, Burke R, Norgate M et al (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383:303–309

    Article  PubMed  CAS  Google Scholar 

  13. Belyaeva EA, Dymkowska D, Wieckowski MR et al (2008) Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol Appl Pharmacol 231:34–42

    Article  PubMed  CAS  Google Scholar 

  14. Kheradmand F, Nourmohammadi I, Modarressi MH et al (2010) Differential gene- expression of metallothionein 1M and 1G in response to zinc in sertoli TM4 cells. Iran Biomed J 14:9–15

    PubMed  CAS  Google Scholar 

  15. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  16. Nzengue Y, Steiman R, Garrel C et al (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243:193–206

    Article  PubMed  CAS  Google Scholar 

  17. Nzengue Y, Steiman R, Guiraud P (2008) Characterization of the cell death induced by cadmium in HaCaT and C6 cell lines. Free Radic Res 42:142–153

    Article  PubMed  CAS  Google Scholar 

  18. Mouret S, Favier A, Beani JC et al (2007) Differential p53-mediated responses to solar-simulated radiation in human papillomavirus type 16-infected keratinocytes. Exp Dermatol 16:476–484

    Article  PubMed  CAS  Google Scholar 

  19. Nzengue Y, Lefebvre E, Cadet J et al (2009) Metallothionein expression in HaCaT and C6 cell lines exposed to cadmium. J Trace Elem Med Biol 23:314–323

    Article  PubMed  CAS  Google Scholar 

  20. Suwalsky M, Villena F, Norris B et al (2004) Cadmium-induced changes in the membrane of human erythrocytes and molecular models. J Inorg Biochem 98:1061–1066

    Article  PubMed  CAS  Google Scholar 

  21. Rousselet E, Richaud P, Douki T et al (2008) A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import. Toxicol Appl Pharmacol 230:312–319

    Article  PubMed  CAS  Google Scholar 

  22. Sensi SL, Yin HZ, Carriedo SG et al (1999) Preferential Zn2+ influx through Ca2+- permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci U S A 96:2414–2419

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Fang J, Leonard SS et al (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  PubMed  CAS  Google Scholar 

  24. Choi CY, An KW, Nelson ER et al (2007) Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPX) mRNA in goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 145:595–600

    Article  PubMed  Google Scholar 

  25. Lazarova M, Labaj J, Eckl P et al (2006) Comparative evaluation of DNA damage by genotoxicants in primary rat cells applying the comet assay. Toxicol Lett 164:54–62

    Article  PubMed  CAS  Google Scholar 

  26. Kumari MV, Hiramatsu M, Ebadi M (2000) Free radical scavenging actions of hippocampal metallothionein isoforms and of antimetallothioneins: an electron spin resonance spectroscopic study. Cell Mol Biol (Noisy-le-grand) 46:627–636

    CAS  Google Scholar 

  27. Angeloff A, Dubey I, Pratviel G et al (2001) Characterization of a 5′-aldehyde terminus resulting from the oxidative attack at C5′ of a 2-deoxyribose on DNA. Chem Res Toxicol 14:1413–1420

    Article  PubMed  CAS  Google Scholar 

  28. Krezel A, Maret W (2007) Different redox states of metallothionein/thionein in biological tissue. Biochem J 402:551–558

    Article  PubMed  CAS  Google Scholar 

  29. Kang YJ (2006) Metallothionein redox cycle and function. Exp Biol Med (Maywood) 231:1459–1467

    CAS  Google Scholar 

  30. Aydin HH, Celik HA, Deveci R et al (2003) Characterization of the cellular response during apoptosis induction in cadmium-treated Hep G2 human hepatoma cells. Biol Trace Elem Res 95:139–153

    Article  PubMed  CAS  Google Scholar 

  31. Waisberg M, Joseph P, Hale B et al (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  PubMed  CAS  Google Scholar 

  32. Boehning D, Patterson RL, Sedaghat L et al (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061

    Article  PubMed  CAS  Google Scholar 

  33. Zhou T, Jia X, Chapin RE et al (2004) Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol Lett 154:191–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Malika Kadri-Dakir, Sandra Grange, and Angèle Krawiec for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Nzengue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nzengue, Y., Steiman, R., Rachidi, W. et al. Oxidative Stress Induced by Cadmium in the C6 Cell Line: Role of Copper and Zinc. Biol Trace Elem Res 146, 410–419 (2012). https://doi.org/10.1007/s12011-011-9265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9265-9

Keywords

Navigation