Advertisement

Biological Trace Element Research

, Volume 143, Issue 1, pp 332–343 | Cite as

Kinetics of Tissue Iron in Experimental Autoimmune Encephalomyelitis in Rats

  • Marin Tota
  • Hrvoje Jakovac
  • Damir Grebić
  • Jelena Marinić
  • Dalibor Broznić
  • Gordana Čanadi-Jurešić
  • Čedomila Milin
  • Biserka Radošević-StašićEmail author
Article

Abstract

To elucidate the role of iron in the pathomechanisms of autoimmune CNS disorders, we estimated the tissue concentrations of Fe2+ in the brain, spinal cord, and liver in the chronic relapsing form of experimental autoimmune encephalomyelitis (EAE). The disease was induced in Dark Agouti (DA) strain of rats, by subcutaneous injection of bovine brain homogenate in complete Freund's adjuvant (CFA). Control rats consisted of unsensitized rats and of rats treated with CFA or saline. The data obtained by clinical assessment and by inductively coupled plasma spectrometry have shown that the attacks of disease (on the 12th and 22nd post-immunization day) were followed by high accumulation of iron in the liver. Additionally, during the second attack of disease, the decreased concentration of Fe2+ was found in cervical spinal cord. The data point to regulatory effects of iron and hepatic trace elements regulating mechanisms in the pathogenesis of EAE.

Keywords

Chronic relapsing EAE DA rats Inductivity coupled plasma spectrometry Iron Brain Spinal cord Liver 

Notes

Acknowledgement

This work was supported by a grant from the Croatian Ministry of Science (Projects Nos 62-0621341-1337 and 62-0621341-0061).

References

  1. 1.
    Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93PubMedCrossRefGoogle Scholar
  2. 2.
    Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NY Acad Sci 1012:252–266PubMedCrossRefGoogle Scholar
  3. 3.
    Moos T (2002) Brain iron homeostasis. Dan Med Bull 49:279–301PubMedGoogle Scholar
  4. 4.
    Connor JR, Menzies SL, Burdo JR et al (2001) Iron and iron management proteins in neurobiology. Pediatr Neurol 25:118–129PubMedCrossRefGoogle Scholar
  5. 5.
    Todorich B, Pasquini JM, Garcia CI et al (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478PubMedCrossRefGoogle Scholar
  6. 6.
    Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13:149–157PubMedCrossRefGoogle Scholar
  7. 7.
    Simmons DA, Casale M, Alcon B et al (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55:1074–1084PubMedCrossRefGoogle Scholar
  8. 8.
    Barnham KJ, Bush AI (2008) Metals in Alzheimer's and Parkinson's diseases. Curr Opin Chem Biol 12:222–228PubMedCrossRefGoogle Scholar
  9. 9.
    Brewer GJ (2010) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 123:319–326CrossRefGoogle Scholar
  10. 10.
    Stankiewicz J, Panter SS, Neema M et al (2007) Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 4:371–386PubMedCrossRefGoogle Scholar
  11. 11.
    Connor JR, Pavlick G, Karli D et al (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355:111–123PubMedCrossRefGoogle Scholar
  12. 12.
    LeVine SM (1997) Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res 760:298–303PubMedCrossRefGoogle Scholar
  13. 13.
    Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92PubMedCrossRefGoogle Scholar
  14. 14.
    Forge JK, Pedchenko TV, LeVine SM (1998) Iron deposits in the central nervous system of SJL mice with experimental allergic encephalomyelitis. Life Sci 63:2271–2284PubMedCrossRefGoogle Scholar
  15. 15.
    Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145PubMedCrossRefGoogle Scholar
  16. 16.
    Pedersen MO, Jensen R, Pedersen DS et al (2009) Metallothionein-I + II in neuroprotection. Biofactors 35:315–325PubMedCrossRefGoogle Scholar
  17. 17.
    Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029PubMedCrossRefGoogle Scholar
  18. 18.
    Grant SM, Wiesinger JA, Beard JL et al (2003) Iron-deficient mice fail to develop autoimmune encephalomyelitis. J Nutr 133:2635–2638PubMedGoogle Scholar
  19. 19.
    Haacke EM, Makki M, Ge Y et al (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 29:537–544PubMedCrossRefGoogle Scholar
  20. 20.
    Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25PubMedCrossRefGoogle Scholar
  21. 21.
    Jakovac H, Grebić D, Tota M et al (2010) Time-course expression of metallothioneins and tissue metals in chronic relapsing form of experimental autoimmune encephalomyelitis. Histol Histopathol (in press)Google Scholar
  22. 22.
    Vukmanovic S, Mostarica Stojkovic M, Lukic ML (1989) Experimental autoimmune encephalomyelitis in “low” and “high” interleukin 2 producer rats. I. Cellular basis of induction. Cell Immunol 121:237–246PubMedCrossRefGoogle Scholar
  23. 23.
    Muhvic D, Radosevic-Stasic B, Pugel E et al (1992) Modulation of experimental allergic encephalomyelitis by somatostatin. Ann NY Acad Sci 650:170–178PubMedCrossRefGoogle Scholar
  24. 24.
    Jakovac H, Grebic D, Mrakovcic-Sutic I et al (2006) Metallothionein expression and tissue metal kinetics after partial hepatectomy in mice. Biol Trace Elem Res 114:249–268PubMedCrossRefGoogle Scholar
  25. 25.
    Mannie M, Swanborg RH, Stepaniak JA (2009) Experimental autoimmune encephalomyelitis in the rat. Curr Protoc Immunol Chapter 15:Unit 15 2Google Scholar
  26. 26.
    Lehmann HC, Meyer zu Horste G, Kieseier BC et al (2009) Review: pathogenesis and treatment of immune-mediated neuropathies. Ther Adv Neurol Disord 2:261–281PubMedCrossRefGoogle Scholar
  27. 27.
    Bhat R, Axtell R, Mitra A et al (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 107:2580–2585PubMedCrossRefGoogle Scholar
  28. 28.
    Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64:123–132PubMedCrossRefGoogle Scholar
  29. 29.
    Platten M, Youssef S, Hur EM et al (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci USA 106:14948–14953PubMedCrossRefGoogle Scholar
  30. 30.
    Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543PubMedCrossRefGoogle Scholar
  31. 31.
    West AK, Chuah MI, Vickers JC et al (2004) Protective role of metallothioneins in the injured mammalian brain. Rev Neurosci 15:157–166PubMedCrossRefGoogle Scholar
  32. 32.
    Schonberg DL, McTigue DM (2009) Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation. Exp Neurol 218:64–74PubMedCrossRefGoogle Scholar
  33. 33.
    Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Investig 32(Suppl 1):70–78CrossRefGoogle Scholar
  34. 34.
    Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2:2PubMedCrossRefGoogle Scholar
  35. 35.
    Linker RA, Kroner A, Horn T et al (2006) Iron particle-enhanced visualization of inflammatory central nervous system lesions by high resolution: preliminary data in an animal model. AJNR Am J Neuroradiol 27:1225–1229PubMedGoogle Scholar
  36. 36.
    Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRefGoogle Scholar
  37. 37.
    Koj A (1996) Initiation of acute phase response and synthesis of cytokines. Biochim Biophys Acta (BBA)—Mol Basis Dis 1317:84–94Google Scholar
  38. 38.
    Vyoral D, Hepcidin PJ (2005) A direct link between iron metabolism and immunity. Int J Biochem Cell Biol 37:1768–1773PubMedCrossRefGoogle Scholar
  39. 39.
    Loreal O, Haziza-Pigeon C, Troadec MB et al (2005) Hepcidin in iron metabolism. Curr Protein Pept Sci 6:279–291PubMedCrossRefGoogle Scholar
  40. 40.
    Ganz T (2005) Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 18:171–182PubMedCrossRefGoogle Scholar
  41. 41.
    Moffatt P, Denizeau F (1997) Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29:261–307PubMedCrossRefGoogle Scholar
  42. 42.
    Coyle P, Philcox JC, Carey LC et al (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647PubMedCrossRefGoogle Scholar
  43. 43.
    Kozlowski H, Janicka-Klos A, Brasun J et al (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685CrossRefGoogle Scholar
  44. 44.
    Verga Falzacappa MV, Vujic Spasic M, Kessler R et al (2007) STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109:353–358PubMedCrossRefGoogle Scholar
  45. 45.
    Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213PubMedCrossRefGoogle Scholar
  46. 46.
    Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26:323–342PubMedCrossRefGoogle Scholar
  47. 47.
    Balesaria S, Ramesh B, McArdle H et al (2009) Divalent metal-dependent regulation of hepcidin expression by MTF-1. FEBS Lett 584:719–725PubMedCrossRefGoogle Scholar
  48. 48.
    Nemeth E, Valore EV, Territo M et al (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461–2463PubMedCrossRefGoogle Scholar
  49. 49.
    Latunde-Dada GO (2009) Iron metabolism: microbes, mouse, and man. Bioessays 31:1309–1317PubMedCrossRefGoogle Scholar
  50. 50.
    Penkowa M, Caceres M, Borup R et al (2006) Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice. J Neurosci Res 84:1452–1474PubMedCrossRefGoogle Scholar
  51. 51.
    West AK, Hidalgo J, Eddins D et al (2008) Metallothionein in the central nervous system: roles in protection, regeneration and cognition. NeuroToxicol 29:489–503CrossRefGoogle Scholar
  52. 52.
    Mocchegiani E, Giacconi R, Muzzioli M et al (2002) Altered zinc binding by metallothioneins in immune-neuroendocrine senescence: a vicious circle between metallothioneins and chaperones? Adv Cell Aging Gerontol 13:261–281CrossRefGoogle Scholar
  53. 53.
    Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A et al (2007) Metallothionein: an overview. World J Gastroenterol 13:993–996PubMedGoogle Scholar
  54. 54.
    Mocchegiani E, Giacconi R, Cipriano C et al (2009) NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol 29:416–425PubMedCrossRefGoogle Scholar
  55. 55.
    Mocchegiani E, Giacconi R, Muti E et al (2004) Zinc, immune plasticity, aging, and successful aging: role of metallothionein. Ann NY Acad Sci 1019:127–134PubMedCrossRefGoogle Scholar
  56. 56.
    Rink L, Haase H (2007) Zinc homeostasis and immunity. Trends Immunol 28:1–4PubMedCrossRefGoogle Scholar
  57. 57.
    Prasad A (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349PubMedGoogle Scholar
  58. 58.
    Sawa Y, Arima Y, Ogura H et al (2009) Hepatic interleukin-7 expression regulates T cell responses. Immunity 30:447–457PubMedCrossRefGoogle Scholar
  59. 59.
    Abo T, Kawamura T, Watanabe H (2000) Physiological responses of extrathymic T cells in the liver. Immunol Rev 174:135–149PubMedCrossRefGoogle Scholar
  60. 60.
    Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marin Tota
    • 1
  • Hrvoje Jakovac
    • 2
  • Damir Grebić
    • 3
  • Jelena Marinić
    • 1
  • Dalibor Broznić
    • 1
  • Gordana Čanadi-Jurešić
    • 1
  • Čedomila Milin
    • 1
  • Biserka Radošević-Stašić
    • 2
    • 4
    Email author
  1. 1.Department of Chemistry and Biochemistry, Medical FacultyUniversity of RijekaRijekaCroatia
  2. 2.Department of Physiology and Immunology, Medical FacultyUniversity of RijekaRijekaCroatia
  3. 3.Department of Surgery, Medical FacultyUniversity of RijekaRijekaCroatia
  4. 4.Medical SchoolUniversity of RijekaRijekaCroatia

Personalised recommendations