Fermentative molecular biohydrogen production from cheese whey: present prospects and future strategy

Abstract

Waste-dependent fermentative routes for biohydrogen production present a possible scenario to produce hydrogen gas on a large scale in a sustainable way. Cheese whey contains a high portion of organic carbohydrate and other organic acids, which makes it a feasible substrate for biohydrogen production. In the present review, recent research progress related to fermentative technologies, which explore the potentiality of cheese whey for biohydrogen production as an effective tool on a large scale, has been analyzed systematically. In addition, application of multiple response surface methodology tools such as full factorial design, Box-Behnken model, and central composite design during fermentative biohydrogen production to study the interactive effects of different bioprocess variables for higher biohydrogen yield in batch, fed-batch, and continuous mode is also discussed. The current paper also emphasizes computational fluid dynamics–based simulation designs, by which the substrate conversion efficiency of the cheese whey–based bioprocess and temperature distribution toward the turbulent flow of reaction liquid can be enhanced. The possible future developments toward higher process efficiency are outlined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Dutta, S. (2014). A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry, 20, 1148–1156.

    CAS  Article  Google Scholar 

  2. 2.

    Osman, A. I., Hefny, M., Maksoud, M. A., Elgarahy, A. M., & Rooney, D. W. (2020). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 1–53.

  3. 3.

    Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2020). Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery, 1–19.

  4. 4.

    Phanduang, O., Lunprom, S., Salakkam, A., Liao, Q., & Reungsang, A. (2019). Improvement in energy recovery from Chlorella sp. biomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. International Journal of Hydrogen Energy, 44, 23899–23911.

    CAS  Article  Google Scholar 

  5. 5.

    Banu, J. R., Kavitha, S., Kannah, R. Y., Bhosale, R. R., & Kumar, G. (2020). Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresource Technology, 298, 122378.

    Article  CAS  Google Scholar 

  6. 6.

    Zhang, Q., Zhang, Z., Wang, Y., Lee, D.-J., Li, G., Zhou, X., Jiang, D., Xu, B., Lu, C., & Li, Y. (2018). Sequential dark and photo fermentation hydrogen production from hydrolyzed corn stover: a pilot test using 11 m3 reactor. Bioresource Technology, 253, 382–386.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Mishra, P., Krishnan, S., Rana, S., Singh, L., Sakinah, M., & Ab Wahid, Z. (2019). Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews, 24, 27–37.

    Article  Google Scholar 

  8. 8.

    Soares, J. F., Confortin, T. C., Todero, I., Mayer, F. D., & Mazutti, M. A. (2020). Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renewable and Sustainable Energy Reviews, 117, 109484.

    CAS  Article  Google Scholar 

  9. 9.

    Castelló, E., Ferraz-Junior, A. D. N., Andreani, C., del Pilar Anzola-Rojas, M., Borzacconi, L., Buitrón, G., Carrillo-Reyes, J., Gomes, S. D., Maintinguer, S. I., & Moreno-Andrade, I. (2020). Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renewable and Sustainable Energy Reviews, 119, 109602.

    Article  CAS  Google Scholar 

  10. 10.

    Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Applied Energy, 144, 73–95.

    CAS  Article  Google Scholar 

  11. 11.

    Swartz, J. (2020). Opportunities toward hydrogen production biotechnologies. Current Opinion in Biotechnology, 62, 248–255.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Akhlaghi, N., & Najafpour-Darzi, G. (2020). A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy.

  13. 13.

    Vasconcelos, E., Leitão, R., & Santaella, S. (2016). Factors that affect bacterial ecology in hydrogen-producing anaerobic reactors. Bioenergy Research, 9, 1260–1271.

    CAS  Article  Google Scholar 

  14. 14.

    Hitam, C., & Jalil, A. (2020). A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conversion and Biorefinery, 1–19.

  15. 15.

    Sybounya, S., & Nitisoravut, R. (2020). Hybrid composite of modified commercial activated carbon and Zn-Ni hydrotalcite for fermentative hydrogen production. Journal of Environmental Chemical Engineering, 9, 104801.

    Article  CAS  Google Scholar 

  16. 16.

    Basak, N., Jana, A. K., & Das, D. (2014). Optimization of molecular hydrogen production by Rhodobacter sphaeroides OU 001 in the annular photobioreactor using response surface methodology. International Journal of Hydrogen Energy, 39, 11889–11901.

    CAS  Article  Google Scholar 

  17. 17.

    Basak, N., Jana, A. K., Das, D., & Saikia, D. (2014). Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. International Journal of Hydrogen Energy, 39, 6853–6871.

    CAS  Article  Google Scholar 

  18. 18.

    Canbay, E., Kose, A., & Oncel, S. S. (2018). Photobiological hydrogen production via immobilization: understanding the nature of the immobilization and investigation on various conventional photobioreactors. 3 Biotech, 8, 244.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Basak, N. Das. D.

  20. 20.

    Asunis, F., De Gioannis, G., Dessì, P., Isipato, M., Lens, P. N., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., & Spiga, D. (2020). The dairy biorefinery: integrating treatment processes for cheese whey valorisation. Journal of Environmental Management, 276, 111240.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Prabakar, D., Manimudi, V. T., Sampath, S., Mahapatra, D. M., Rajendran, K., & Pugazhendhi, A. (2018). Advanced biohydrogen production using pretreated industrial waste: outlook and prospects. Renewable and Sustainable Energy Reviews, 96, 306–324.

    CAS  Article  Google Scholar 

  22. 22.

    Navarro, R., Sanchez-Sanchez, M., Alvarez-Galvan, M., Del Valle, F., & Fierro, J. (2009). Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy & Environmental Science, 2, 35–54.

    CAS  Article  Google Scholar 

  23. 23.

    Azbar, N., & Dokgoz, F. T. C. (2010). The effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor. International Journal of Hydrogen Energy, 35, 5028–5033.

    CAS  Article  Google Scholar 

  24. 24.

    Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110, 48–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Montecchio, D., Yuan, Y., & Malpei, F. (2018). Hydrogen production dynamic during cheese whey dark fermentation: new insights from modelization. International Journal of Hydrogen Energy, 43, 17588–17601.

    CAS  Article  Google Scholar 

  26. 26.

    Westermann, P., Jørgensen, B., Lange, L., Ahring, B. K., & Christensen, C. H. (2007). Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. International Journal of Hydrogen Energy, 32, 4135–4141.

    CAS  Article  Google Scholar 

  27. 27.

    Argun, H., & Kargi, F. (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. International Journal of Hydrogen Energy, 36, 7443–7459.

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, Z., Li, Y., Zhang, H., He, C., & Zhang, Q. (2017). Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production. Bioresource Technology, 245, 884–889.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Zhang, L., Wang, Y.-Z., Zhao, T., & Xu, T. (2019). Hydrogen production from simultaneous saccharification and fermentation of lignocellulosic materials in a dual-chamber microbial electrolysis cell. International Journal of Hydrogen Energy, 44, 30024–30030.

    CAS  Article  Google Scholar 

  30. 30.

    Sathyaprakasan, P., & Kannan, G. (2015). Economics of bio-hydrogen production. International Journal of Environmental Science and Development, 6, 352.

    CAS  Article  Google Scholar 

  31. 31.

    Karthic, P., & Joseph, S. (2012). Comparison and limitations of biohydrogen production processes. Research of Journal Biotechnology, 7, 59–71.

    CAS  Google Scholar 

  32. 32.

    Sarma, S. J., Brar, S. K., Le Bihan, Y., & Buelna, G. (2013). Liquid waste from bio-hydrogen production–a commercially attractive alternative for phosphate solubilizing bio-fertilizer. International Journal of Hydrogen Energy, 38, 8704–8707.

    CAS  Article  Google Scholar 

  33. 33.

    Chen, W., Chen, S., Chao, S., & Jian, Z. (2011). Butanol production from the effluent of hydrogen fermentation. Water Science and Technology, 63, 1236–1240.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Reddy, M. V., Amulya, K., Rohit, M., Sarma, P., & Mohan, S. V. (2014). Valorization of fatty acid waste for bioplastics production using Bacillus tequilensis: integration with dark-fermentative hydrogen production process. International Journal of Hydrogen Energy, 39, 7616–7626.

    Article  CAS  Google Scholar 

  35. 35.

    Devi, M. P., Subhash, G. V., & Mohan, S. V. (2012). Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renewable Energy, 43, 276–283.

    Article  CAS  Google Scholar 

  36. 36.

    Macwan, S. R., Dabhi, B. K., Parmar, S., & Aparnathi, K. (2016). Whey and its utilization. International Journal of Current Microbiology and Applied Sciences, 5, 134–155.

    CAS  Article  Google Scholar 

  37. 37.

    Farizoglu, B., Keskinler, B., Yildiz, E., & Nuhoglu, A. (2004). Cheese whey treatment performance of an aerobic jet loop membrane bioreactor. Process Biochemistry, 39, 2283–2291.

    CAS  Article  Google Scholar 

  38. 38.

    Siso, M. G. (1996). The biotechnological utilization of cheese whey: a review. Bioresource Technology, 57, 1–11.

    Article  Google Scholar 

  39. 39.

    Azbar, N., Dokgöz, F. T. Ç., & Peker, Z. (2009). Optimization of basal medium for fermentative hydrogen production from cheese whey wastewater. International Journal of Green Energy, 6, 371–380.

    CAS  Article  Google Scholar 

  40. 40.

    Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods, 8, 347.

    CAS  PubMed Central  Article  Google Scholar 

  41. 41.

    Escalante, H., Castro, L., Amaya, M., Jaimes, L., & Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Ahmad, T., Aadil, R. M., Ahmed, H., ur Rahman, U., Soares, B. C., Souza, S. L., Pimentel, T. C., Scudino, H., Guimarães, J. T., & Esmerino, E. A. (2019). Treatment and utilization of dairy industrial waste: a review. Trends Food Science Technology, 88, 361–372.

    CAS  Article  Google Scholar 

  43. 43.

    Nagarajan, D., Nandini, A., Dong, C.-D., Lee, D.-J., & Chang, J.-S. (2020). Lactic acid production from renewable feedstocks using poly (vinyl alcohol)-immobilized Lactobacillus plantarum 23. Industrial and Engineering Chemistry Research, 59, 17156–17164.

    CAS  Article  Google Scholar 

  44. 44.

    Oshiro, M., Shinto, H., Tashiro, Y., Miwa, N., Sekiguchi, T., Okamoto, M., Ishizaki, A., & Sonomoto, K. (2009). Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 108, 376–384.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Okano, K., Yoshida, S., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2009). Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Applied and Environmental Microbiology, 75, 5175–5178.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Holzapfel, W. H., & Wood, B. J. (2014). Lactic acid bacteria: biodiversity and taxonomy. John Wiley & Sons.

  48. 48.

    Sinha, P., Roy, S., & Das, D. (2015). Role of formate hydrogen lyase complex in hydrogen production in facultative anaerobes. International Journal of Hydrogen Energy, 40, 8806–8815.

    CAS  Article  Google Scholar 

  49. 49.

    Sawers, G. (1994). The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek, 66, 57–88.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Bagramyan, K., & Trchounian, A. (2003). Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry (Moscow), 68, 1159–1170.

    CAS  Article  Google Scholar 

  51. 51.

    da Silva, A. N., Macêdo, W. V., Sakamoto, I. K., Pereyra, D. d. L. A. D., Mendes, C. O., Maintinguer, S. I., Caffaro Filho, R. A., Damianovic, M. H. Z., Varesche, M. B. A., & de Amorim, E. L. C. (2019). Biohydrogen production from dairy industry wastewater in an anaerobic fluidized-bed reactor. Biomass and Bioenergy, 120, 257–264.

    CAS  Article  Google Scholar 

  52. 52.

    Romão, B. B., Silva, F. T. M., de Barcelos Costa, H. C., do Carmo, T. S., Cardoso, S. L., de Souza Ferreira, J., Batista, F. R. X., & Cardoso, V. L. (2019). Alternative techniques to improve hydrogen production by dark fermentation. 3 Biotech, 9, 18.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Lima, D., Lazaro, C., Rodrigues, J., Ratusznei, S., & Zaiat, M. (2016). Optimization performance of an AnSBBR applied to biohydrogen production treating whey. Journal of Environmental Management, 169, 191–201.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Castelló, E., Braga, L., Fuentes, L., & Etchebehere, C. (2018). Possible causes for the instability in the H2 production from cheese whey in a CSTR. International Journal of Hydrogen Energy, 43, 2654–2665.

    Article  CAS  Google Scholar 

  55. 55.

    Blanco, V., Oliveira, G., & Zaiat, M. (2019). Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: performance evaluation and kinetic modeling. Renewable Energy, 139, 1310–1319.

    CAS  Article  Google Scholar 

  56. 56.

    Sarma, S. J., Pachapur, V., Brar, S. K., Le Bihan, Y., & Buelna, G. (2015). Hydrogen biorefinery: potential utilization of the liquid waste from fermentative hydrogen production. Renewable and Sustainable Energy Reviews, 50, 942–951.

    CAS  Article  Google Scholar 

  57. 57.

    Silva, F. T. M., Bessa, L. P., Vieira, L. M., Moreira, F. S., de Souza Ferreira, J., Batista, F. R. X., & Cardoso, V. L. (2019). Dark fermentation effluent as substrate for hydrogen production from Rhodobacter capsulatus highlighting the performance of different fermentation systems. 3 Biotech, 9, 153.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Rao, R., & Basak, N. (2020). Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: the present state of the art. Biotechnology and Applied Biochemistry.

  59. 59.

    Azwar, M., Hussain, M., & Abdul-Wahab, A. (2014). Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renewable and Sustainable Energy Reviews, 31, 158–173.

    CAS  Article  Google Scholar 

  60. 60.

    Baeyens, J., Zhang, H., Nie, J., Appels, L., Dewil, R., Ansart, R., & Deng, Y. (2020). Reviewing the potential of bio-hydrogen production by fermentation. Renewable and Sustainable Energy Reviews, 131, 110023.

    CAS  Article  Google Scholar 

  61. 61.

    Basak, N., & Das, D. (2007). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World Journal of Microbiology and Biotechnology, 23, 31–42.

    CAS  Article  Google Scholar 

  62. 62.

    Rai, P. K., Singh, S., & Asthana, R. (2012). Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Applied Biochemistry and Biotechnology, 167, 1540–1549.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Kim, D.-H., & Kim, M.-S. (2013). Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresource Technology, 127, 267–274.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Yin, Y., & Wang, J. (2019). Optimization of fermentative hydrogen production by Enterococcus faecium INET2 using response surface methodology. International Journal of Hydrogen Energy, 44, 1483–1491.

    CAS  Article  Google Scholar 

  65. 65.

    Lopez-Hidalgo, A. M., Alvarado-Cuevas, Z. D., & De Leon-Rodriguez, A. (2018). Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy, 159, 32–41.

    CAS  Article  Google Scholar 

  66. 66.

    Mishra, P., Singh, L., Ab Wahid, Z., Krishnan, S., Rana, S., Islam, M. A., Sakinah, M., Ameen, F., & Syed, A. (2018). Photohydrogen production from dark-fermented palm oil mill effluent (DPOME) and statistical optimization: renewable substrate for hydrogen. Journal of Cleaner Production, 199, 11–17.

    CAS  Article  Google Scholar 

  67. 67.

    Rao, R., & Basak, N. (2020). Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. International Journal of Hydrogen Energy, 46, 1777–1800.

    Article  CAS  Google Scholar 

  68. 68.

    Zainal, B. S., Zinatizadeh, A. A., Chyuan, O. H., Mohd, N. S., & Ibrahim, S. (2018). Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent (POME). International Journal of Hydrogen Energy, 43, 10637–10644.

    CAS  Article  Google Scholar 

  69. 69.

    Sagır, E., Yucel, M., & Hallenbeck, P. C. (2018). Demonstration and optimization of sequential microaerobic dark-and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91. Bioresource Technology, 250, 43–52.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Mahata, C., Ray, S., & Das, D. (2020). Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Conversion and Management, 219, 113047.

    CAS  Article  Google Scholar 

  71. 71.

    Al-Mohammedawi, H. H., Znad, H., & Eroglu, E. (2018). Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158. International Journal of Hydrogen Energy.

  72. 72.

    Basak, N., Jana, A. K., & Das, D. (2016). CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. International Journal of Hydrogen Energy, 41, 7301–7317.

    CAS  Article  Google Scholar 

  73. 73.

    Chezeau, B., & Vial, C. (2019). Modeling and simulation of the biohydrogen production processes (pp. 445–483). Amsterdam: Elsevier.

    Google Scholar 

  74. 74.

    Maluta, F., Paglianti, A., & Montante, G. (2019). Modelling of biohydrogen production in stirred fermenters by computational fluid dynamics. Process Safety and Environment Protection, 125, 342–357.

    CAS  Article  Google Scholar 

  75. 75.

    Brindhadevi, K., Shanmuganathan, R., Pugazhendhi, A., Gunasekar, P., & Manigandan, S. (2020). Biohydrogen production using horizontal and vertical continuous stirred tank reactor-a numerical optimization. International Journal of Hydrogen Energy.

  76. 76.

    Wang, J., Xue, Q., Guo, T., Mei, Z., Long, E., Wen, Q., Huang, W., Luo, T., & Huang, R. (2018). A review on CFD simulating method for biogas fermentation material fluid. Renewable and Sustainable Energy Reviews, 97, 64–73.

    Article  Google Scholar 

  77. 77.

    Wang, X., Ding, J., Guo, W.-Q., & Ren, N.-Q. (2010). Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation. International Journal of Hydrogen Energy, 35, 10960–10966.

    CAS  Article  Google Scholar 

  78. 78.

    Niño-Navarro, C., Chairez, I., Torres-Bustillos, L., Ramírez-Muñoz, J., Salgado-Manjarrez, E., & Garcia-Peña, E. (2016). Effects of fluid dynamics on enhanced biohydrogen production in a pilot stirred tank reactor: CFD simulation and experimental studies. International Journal of Hydrogen Energy, 41, 14630–14640.

    Article  CAS  Google Scholar 

  79. 79.

    Pan, H., fan Hu, Y., hong Pu, W., fen Dan, J., & kuan Yang, J. (2017). CFD optimization of the baffle angle of an expanded granular sludge bed reactor. Journal of Environmental Chemical Engineering, 5, 4531–4538.

    Article  CAS  Google Scholar 

  80. 80.

    Ri, P.-C., Ren, N.-Q., Ding, J., Kim, J.-S., & Guo, W.-Q. (2017). CFD optimization of horizontal continuous stirred-tank (HCSTR) reactor for bio-hydrogen production. International Journal of Hydrogen Energy, 42, 9630–9640.

    CAS  Article  Google Scholar 

  81. 81.

    Zhang, Z., Wu, Q., Zhang, C., Wang, Y., Li, Y., & Zhang, Q. (2014). Effect of inlet velocity on heat transfer process in a novel photo-fermentation biohydrogen production bioreactor using computational fluid dynamics simulation. Bioresources, 10, 469–481.

    Google Scholar 

  82. 82.

    Zhiping, Z., Quanguo, Z., Jianzhi, Y., Lianhao, L., Tian, Z., & Zhengbai, L. (2017). CFD modeling and experiment of heat transfer in a tubular photo-bioreactor for photo-fermentation bio-hydrogen production. International Journal of Agriculture Biology Engineering, 10, 209–217.

    Google Scholar 

  83. 83.

    Seifert, K., Waligorska, M., & Laniecki, M. (2010). Hydrogen generation in photobiological process from dairy wastewater. International Journal of Hydrogen Energy, 35, 9624–9629.

    CAS  Article  Google Scholar 

  84. 84.

    Dipasquale, L., Adessi, A., d’Ippolito, G., Rossi, F., Fontana, A., & De Philippis, R. (2015). Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Applied Microbiology and Biotechnology, 99, 1001–1010.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Adessi, A., Venturi, M., Candeliere, F., Galli, V., Granchi, L., & De Philippis, R. (2018). Bread wastes to energy: sequential lactic and photo-fermentation for hydrogen production. International Journal of Hydrogen Energy, 43, 9569–9576.

    CAS  Article  Google Scholar 

  86. 86.

    Davila-Vazquez, G., Alatriste-Mondragón, F., de León-Rodríguez, A., & Razo-Flores, E. (2008). Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. International Journal of Hydrogen Energy, 33, 4989–4997.

    CAS  Article  Google Scholar 

  87. 87.

    Rosales-Colunga, L. M., Razo-Flores, E., Ordoñez, L. G., Alatriste-Mondragón, F., & De León-Rodríguez, A. (2010). Hydrogen production by Escherichia coli ΔhycA ΔlacI using cheese whey as substrate. International Journal of Hydrogen Energy, 35, 491–499.

    CAS  Article  Google Scholar 

  88. 88.

    Davila-Vazquez, G., de León-Rodríguez, A., Alatriste-Mondragón, F., & Razo-Flores, E. (2011). The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass and Bioenergy, 35, 3174–3181.

    CAS  Article  Google Scholar 

  89. 89.

    Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. International Journal of Hydrogen Energy, 37, 8338–8342.

    CAS  Article  Google Scholar 

  90. 90.

    De Gioannis, G., Friargiu, M., Massi, E., Muntoni, A., Polettini, A., Pomi, R., & Spiga, D. (2014). Biohydrogen production from dark fermentation of cheese whey: influence of pH. International Journal of Hydrogen Energy, 39, 20930–20941.

    Article  CAS  Google Scholar 

  91. 91.

    Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. International Journal of Hydrogen Energy, 40, 9942–9951.

    CAS  Article  Google Scholar 

  92. 92.

    Moreno, R., Escapa, A., Cara, J., Carracedo, B., & Gómez, X. (2015). A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis. International Journal of Hydrogen Energy, 40, 168–175.

    CAS  Article  Google Scholar 

  93. 93.

    Patel, A. K., Vaisnav, N., Mathur, A., Gupta, R., & Tuli, D. K. (2016). Whey waste as potential feedstock for biohydrogen production. Renewable Energy, 98, 221–225.

    CAS  Article  Google Scholar 

  94. 94.

    Moreira, F., Machado, R., Romão, B., Batista, F., Ferreira, J., & Cardoso, V. (2017). Improvement of hydrogen production by biological route using repeated batch cycles. Process Biochemistry, 58, 60–68.

    CAS  Article  Google Scholar 

  95. 95.

    Gokfiliz-Yildiz, P., & Karapinar, I. (2018). Optimization of particle number, substrate concentration and temperature of batch immobilized reactor system for biohydrogen production by dark fermentation. International Journal of Hydrogen Energy, 43, 10655–10665.

    CAS  Article  Google Scholar 

  96. 96.

    Pandey, A., Srivastava, S., Rai, P., & Duke, M. (2019). Cheese whey to biohydrogen and useful organic acids: a non-pathogenic microbial treatment by L. acidophilus. Scientific Reports, 9, 1–9.

    Article  CAS  Google Scholar 

  97. 97.

    Alvarez-Guzmán, C. L., Cisneros-de la Cueva, S., Balderas-Hernández, V. E., Smoliński, A., & De León-Rodríguez, A. (2020). Biohydrogen production from cheese whey powder by Enterobacter asburiae: effect of operating conditions on hydrogen yield and chemometric study of the fermentative metabolites. Energy Reports, 6, 1170–1180.

    Article  Google Scholar 

  98. 98.

    Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., & Razo-Flores, E. (2012). Different start-up strategies to enhance biohydrogen production from cheese whey in UASB reactors. International Journal of Hydrogen Energy, 37, 5591–5601.

    CAS  Article  Google Scholar 

  99. 99.

    Perna, V., Castelló, E., Wenzel, J., Zampol, C., Lima, D. F., Borzacconi, L., Varesche, M., Zaiat, M., & Etchebehere, C. (2013). Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. International Journal of Hydrogen Energy, 38, 54–62.

    CAS  Article  Google Scholar 

  100. 100.

    Rosa, P. R. F., Santos, S. C., & Silva, E. L. (2014). Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. International Journal of Hydrogen Energy, 39, 1288–1296.

    CAS  Article  Google Scholar 

  101. 101.

    Rosa, P. R. F., Santos, S. C., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Bioresource Technology, 161, 10–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Fernández, C., Cuetos, M., Martínez, E., & Gómez, X. (2015). Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass and Bioenergy, 81, 55–62.

    Article  CAS  Google Scholar 

  103. 103.

    Ottaviano, L. M., Ramos, L. R., Botta, L. S., Varesche, M. B. A., & Silva, E. L. (2017). Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: effect of hydraulic retention time and initial substrate concentration. International Journal of Hydrogen Energy, 42, 4848–4860.

    CAS  Article  Google Scholar 

  104. 104.

    Ghimire, A., Luongo, V., Frunzo, L., Pirozzi, F., Lens, P. N., & Esposito, G. (2017). Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: use of buffalo manure as buffering agent. International Journal of Hydrogen Energy, 42, 4861–4869.

    CAS  Article  Google Scholar 

  105. 105.

    Argun, H., & Kargi, F. (2010). Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: effects of light source and light intensity. International Journal of Hydrogen Energy, 35, 1595–1603.

    CAS  Article  Google Scholar 

  106. 106.

    Lo, Y.-C., Chen, C.-Y., Lee, C.-M., & Chang, J.-S. (2010). Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. International Journal of Hydrogen Energy, 35, 10944–10953.

    CAS  Article  Google Scholar 

  107. 107.

    Cheng, J., Su, H., Zhou, J., Song, W., & Cen, K. (2011). Hydrogen production by mixed bacteria through dark and photo fermentation. International Journal of Hydrogen Energy, 36, 450–457.

    CAS  Article  Google Scholar 

  108. 108.

    Laurinavichene, T. V., Belokopytov, B. F., Laurinavichius, K. S., Khusnutdinova, A. N., Seibert, M., & Tsygankov, A. A. (2012). Towards the integration of dark-and photo-fermentative waste treatment. 4. Repeated batch sequential dark-and photofermentation using starch as substrate. International Journal of Hydrogen Energy, 37, 8800–8810.

    CAS  Article  Google Scholar 

  109. 109.

    Cheng, J., Xia, A., Liu, Y., Lin, R., Zhou, J., & Cen, K. (2012). Combination of dark-and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. International Journal of Hydrogen Energy, 37, 13330–13337.

    CAS  Article  Google Scholar 

  110. 110.

    Chookaew, T., Sompong, O., & Prasertsan, P. (2015). Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. International Journal of Hydrogen Energy, 40, 7433–7438.

    CAS  Article  Google Scholar 

  111. 111.

    Nasr, M., Tawfik, A., Ookawara, S., Suzuki, M., Kumari, S., & Bux, F. (2015). Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. Journal of Industrial and Engineering Chemistry, 21, 500–506.

    CAS  Article  Google Scholar 

  112. 112.

    Lin, R., Cheng, J., Yang, Z., Ding, L., Zhang, J., Zhou, J., & Cen, K. (2016). Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal. Bioresource Technology, 214, 686–691.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Mishra, P., Thakur, S., Singh, L., Ab Wahid, Z., & Sakinah, M. (2016). Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. International Journal of Hydrogen Energy, 41, 18431–18440.

    CAS  Article  Google Scholar 

  114. 114.

    Hitit, Z. Y., Lazaro, C. Z., & Hallenbeck, P. C. (2017). Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. International Journal of Hydrogen Energy, 42, 18832–18843.

    CAS  Article  Google Scholar 

  115. 115.

    Cai, J., Zhao, Y., Fan, J., Li, F., Feng, C., Guan, Y., Wang, R., & Tang, N. (2019). Photosynthetic bacteria improved hydrogen yield of combined dark-and photo-fermentation. Journal of Biotechnology, 302, 18–25.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Dinesh, G. H., Nguyen, D. D., Ravindran, B., Chang, S. W., Vo, D.-V. N., Bach, Q.-V., Tran, H. N., Basu, M. J., Mohanrasu, K., Murugan, R. S., Swetha, T. A., Sivapraksh, G., Selvaraj, A., & Arun, A. (2020). Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes. International Journal of Hydrogen Energy, 45, 5840–5853.

    CAS  Article  Google Scholar 

  117. 117.

    Dolly, S., Pandey, A., Pandey, B. K., & Gopal, R. (2015). Process parameter optimization and enhancement of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and Escherichia coli NMBL-04 using Fe-nanoparticle. International Journal of Hydrogen Energy, 40, 16010–16020.

    CAS  Article  Google Scholar 

  118. 118.

    Sangyoka, S., Reungsang, A., & Lin, C.-Y. (2016). Optimization of biohydrogen production from sugarcane bagasse by mixed cultures using a statistical method. Sustainable Environment Resources, 26, 235–242.

    CAS  Article  Google Scholar 

  119. 119.

    de Oliveira Faber, M., & Ferreira-Leitão, V. S. (2016). Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production. Bioresour. Technol., 219, 365–370.

    Google Scholar 

  120. 120.

    Akhlaghi, M., Boni, M. R., De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., & Spiga, D. (2017). A parametric response surface study of fermentative hydrogen production from cheese whey. Bioresource Technology, 244, 473–483.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Asadi, N., & Zilouei, H. (2017). Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresource Technology, 227, 335–344.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Sewsynker-Sukai, Y., & Kana, E. B. G. (2017). Does the volume matter in bioprocess model development? An insight into modelling and optimization of biohydrogen production. International Journal of Hydrogen Energy, 42, 5780–5792.

    CAS  Article  Google Scholar 

  123. 123.

    Lopez-Hidalgo, A. M., Alvarado-Cuevas, Z. D., & De León-Rodríguez, A. (2018). Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy.

  124. 124.

    Ulhiza, T. A., Puad, N. I. M., & Azmi, A. S. (2018). Optimization of culture conditions for biohydrogen production from sago wastewater by Enterobacter aerogenes using response surface methodology. International Journal of Hydrogen Energy, 43, 22148–22158.

    CAS  Article  Google Scholar 

  125. 125.

    de la Cueva, S. C., Guzmán, C. L. A., Hernández, V. E. B., & Rodríguez, A. D. L. (2018). Optimization of biohydrogen production by the novel psychrophilic strain N92 collected from the Antarctica. International Journal of Hydrogen Energy, 43, 13798–13809.

    Article  CAS  Google Scholar 

  126. 126.

    Ding, J., Wang, X., Zhou, X.-F., Ren, N.-Q., & Guo, W.-Q. (2010). CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology, 101, 7005–7013.

    CAS  Article  Google Scholar 

  127. 127.

    Montantea, G., Coroneoa, M., Francesconib, J., Pagliantia, A., & Magellia, F. (2012). CFD modelling of a novel stirred reactor for the bio-production of hydrogen. Simulation, 10, 12.

    Google Scholar 

  128. 128.

    Zhang, Y., Yu, G., Yu, L., Siddhu, M. A., Gao, M., Abdeltawab, A. A., Al-Deyab, S. S., & Chen, X. (2016). Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion. Bioresource Technology, 203, 166–172.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the economic support and facility received from Dr. B. R. Ambedkar National Institute of Technology, Jalandhar (India).

Funding

No specific grant was received.

Author information

Affiliations

Authors

Contributions

First author, Raman Rao, had the idea of writing this review article, and he performed the literature survey and data research. This is later critically revised by corresponding author Dr. Nitai Basak.

Corresponding author

Correspondence to Nitai Basak.

Ethics declarations

Research involving human participants and/or animals

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Thorough discussion of metabolic pathway of lactic acid–producing bacteria for cheese whey fermentation and biochemistry of biohydrogen production from cheese whey by facultative anaerobes.

• Comprehensive summary of the state of the art of dark fermentation and sequential dark-photo fermentation to produce biohydrogen.

• Up-to-date consideration of response surface methodology to scale up biohydrogen production by optimizing process parameters.

• Holistic approach of computational fluid dynamics–based simulation to study hydrodynamic characteristics (gas-liquid flow) and temperature distribution inside the bioreactor configuration for synergistic improvement in biohydrogen production.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, R., Basak, N. Fermentative molecular biohydrogen production from cheese whey: present prospects and future strategy. Appl Biochem Biotechnol (2021). https://doi.org/10.1007/s12010-021-03528-6

Download citation

Keywords

  • Biohydrogen
  • Cheese whey
  • Dark fermentation
  • Photo fermentation
  • Optimization