Modulation of Siderophore Production by Pseudomonas fluorescens Through the Manipulation of the Culture Medium Composition

Abstract

Pseudomonas fluorescens has the ability to produce the siderophore pyoverdine, a biotechnologically significant iron chelator, which has a wide range of potential applications, such as in agriculture (iron fertilizers) and medicine (development of antibiotics). The present work aimed to evaluate the influence of culture medium composition on the production of siderophores by P. fluorescens DSM 50090, an industrial relevant strain. It was found that the bacterium grown in minimal medium succinate (MMS) had a higher siderophore production than in King B medium. The replacement of succinate by glycerol or dextrose, in minimal medium, originated lower siderophore production. The increase of succinate concentration, the addition of amino acids or the reduction of phosphate in the culture medium did not improve siderophore production by P. fluorescens. The results obtained strongly suggest that (i) MMS is more appropriate than King B for large-scale production of siderophores; (ii) the modification of the culture medium composition, particularly the type of carbon source, influences the level of siderophore secreted; (iii) the production of siderophore by P. fluorescens seems to be a tightly regulated process; once a maximum siderophore concentration has been reached in the culture medium, the bacterium seems to be unable to produce more compound.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chu, B. C., Garcia-Herrero, A., Johanson, T. H., Krewulak, K. D., Lau, C. K., Peacock, R. S., & Vogel, H. J. (2010). Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. BioMetals, 23(4), 601–611.

    CAS  Article  Google Scholar 

  2. 2.

    Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637–657.

    CAS  Article  Google Scholar 

  3. 3.

    Ahmed, E., & Holmstrom, S. J. M. (2014). Siderophores in environmental research: roles and applications. Microbial Biotechnology, 7(3), 196–208.

    CAS  Article  Google Scholar 

  4. 4.

    Cornelis, P. &, & Matthijs, S. (2007). Pseudomonas siderophores and their biological significance. In A. Varma & S. B. Chincholkar (Eds.), Microbial Siderophores (pp. 193–203). Springer: Berlin Heidelberg.

  5. 5.

    Ringel, M. T., & Brueser, T. (2018). The biosynthesis of pyoverdines. Microbial Cell, 5(10), 424–437.

    CAS  Article  Google Scholar 

  6. 6.

    Meyer, J. M., & Abdallah, M. A. (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology, 107(2), 319–328.

    CAS  Google Scholar 

  7. 7.

    Cezard, C., Farvacques, N., & Sonnet, P. (2015). Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Current Medicinal Chemistry, 22(2), 165–186.

    CAS  Article  Google Scholar 

  8. 8.

    Stintzi, A., Evans, K., Meyer, J. M., & Poole, K. (1998). Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiology Letters, 166(2), 341–345.

    CAS  Article  Google Scholar 

  9. 9.

    Zaborin, A., Romanowski, K., Gerdes, S., Holbrook, C., Lepine, F., Long, J., & Alverdy, J. C. (2009). Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proceedings of the National Academy of Sciences, 106(15), 6327–6332.

    CAS  Article  Google Scholar 

  10. 10.

    Zaborin, A., Gerdes, S., Holbrook, C., Liu, D. C., Zaborina, O. Y., & Alverdy, J. C. (2012). Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate. PLoS One, 7(4), e34883.

    CAS  Article  Google Scholar 

  11. 11.

    Imperi, F., Tiburzi, F., Fimia, G. M., & Visca, P. (2010). Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa. Environmental Microbiology, 12(6), 1630–1642.

    CAS  PubMed  Google Scholar 

  12. 12.

    Albesa, I., Barberis, L., Pajaro, M., & Alberto, E. (1985). Pyoverdine production by Pseudomonas fluorescens in synthetic media with various sources of nitrogen. Microbiology-sgm, 131(12), 3251–3254.

    CAS  Article  Google Scholar 

  13. 13.

    Kisaalita, W. S., Slininger, P. J., & Bothast, R. J. (1993). Defined media for optimal pyoverdine production by Pseudomonas fluorescens 2-79. Applied Microbiology and Biotechnology, 39(6), 750–755.

    CAS  Article  Google Scholar 

  14. 14.

    Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23(5), 3984–3999.

    CAS  Article  Google Scholar 

  15. 15.

    Poirier, I., Kuhn, L., Demortiere, A., Mirvaux, B., Hammann, P., Chicher, J., & Bertrand, M. (2016). Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. Journal of Proteomics, 148, 213–227.

    CAS  Article  Google Scholar 

  16. 16.

    Nagata, T., Oobo, T., & Aozasa, O. (2013). Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants. Journal of Bioscience and Bioengineering, 115(6), 686–690.

    CAS  Article  Google Scholar 

  17. 17.

    Martins, J. G., Clara Martin, L. A., Barros, M. T., Soares, H. M. V. M., & Lucena, J. J. (2018). Azotochelin and N-dihydroxy-N,N’-diisopropylhexanediamide as Fe sources to cucumber plants in hydroponic cultures. Emirates Journal of Food and Agriculture, 30(1), 65–76.

  18. 18.

    Ambrosi, C., Leoni, L., & Visca, P. (2002). Different responses of pyoverdine genes to autoinduction in Pseudomonas aeruginosa and the group Pseudomonas fluorescens-Pseudomonas putida. Applied and Environmental Microbiology, 68(8), 4122–4126.

    CAS  Article  Google Scholar 

  19. 19.

    Environment Canada & Health Canada. (2015). Final screening assessment for Pseudomonas fluorescens ATCC 13525. Environment Canada & Health Canada

  20. 20.

    Linget, C., Stylianou, D. G., Dell, A., Wolff, R. E., Piémont, Y., & Abdallah, M. A. (1992). Bacterial siderophores: the structure of a desferriferribactin produced by Pseudomonas fluorescens ATCC 13525. Tetrahedron Letters, 33(27), 3851–3854.

    CAS  Article  Google Scholar 

  21. 21.

    Philson, S. B., & Llinás, M. (1982). Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization. Journal of Biological Chemistry, 257(14), 8081–8085.

    CAS  PubMed  Google Scholar 

  22. 22.

    Chiadò, A., Varani, L., Bosco, F., & Marmo, L. (2013). Opening study on the development of a new biosensor for metal toxicity based on Pseudomonas fluorescens pyoverdine. Biosensors, 3(4), 385–399.

    Article  Google Scholar 

  23. 23.

    Pahlow, S., Stöckel, S., Pollok, S., Cialla-May, D., Rösch, P., Weber, K., & Popp, J. (2016). Rapid identification of Pseudomonas spp. via raman spectroscopy using pyoverdine as capture probe. Analytical Chemistry, 88(3), 1570–1577.

    CAS  Article  Google Scholar 

  24. 24.

    Hoegy, F., Mislin, G. L. A., & Schalk, I. J. (2014). Pyoverdine and pyochelin measurements. In A. Filloux & J.-L. Ramos (Eds.), Pseudomonas Methods and Protocols, Methods in Molecular Microbiology, 1149 (pp. 293–301). Springer: New York.

    Google Scholar 

  25. 25.

    King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44(2), 301–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Rojo, F. (2010). Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiology Reviews, 34(5), 658–684.

    CAS  Article  Google Scholar 

  27. 27.

    Sayyed, R., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., & Chincholkar, S. B. (2005). Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian Journal of Biotechnology, 4(4), 484–490.

    CAS  Google Scholar 

  28. 28.

    Kristiansen, B. (2001). Process economics. In C. Ratledge & B. Kristiansen (Eds.), Basic Biotechnology (pp. 239–252). Cambridge University Press: Cambridge.

    Google Scholar 

  29. 29.

    Fallahzadeh, V., Ahmadzadeh, M., & Sharifi, R. (2010). Growth and pyoverdine production kinetics of Pseudomonas aeruginosa 7NSK2 in an experimental fermentor. Journal of Agricultural Technology, 6(1), 107–115.

    Google Scholar 

  30. 30.

    Gouda, S., & Greppin, H. (1965). Biosynthèse pigmentaire chez Pseudomonas fluorescens en fonction de la concentration du substrat hydrocarboné ou aminé. Archives des sciences de Genève, 18, 716–721.

    Google Scholar 

  31. 31.

    Barrientos-Moreno, L., Molina-Henares, M. A., Pastor-Garcia, M., Ramos-González, M. I., & Espinosa-Urgel, M. (2019). Arginine biosynthesis modulates pyoverdine production and release in Pseudomonas putida as part of the mechanism of adaptation to oxidative stress. Journal of Bacteriology, 201(22), e00454–e00419.

    CAS  Article  Google Scholar 

  32. 32.

    Hohlneicher, U., Hartmann, R., Taraz, K., & Budzikiewicz, H. (1995). Pyoverdin, ferribactin, azotobactin - a new triade of siderophores from Pseudomonas chlororaphis ATCC 9446 and its relation to Pseudomonas fluorescens ATCC 13525. Zeitschrift für Naturforschung. Section C, 50(5–6), 337–344.

    CAS  Article  Google Scholar 

  33. 33.

    Hohnadel, D., Haas, D., & Meyer, J.-M. (1986). Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. FEMS Microbiology Letters, 36(2–3), 195–199.

    CAS  Article  Google Scholar 

  34. 34.

    Elena, M., & de Villegas, D. (2007). Biotechnological production of siderophores. In A. Varma & S. B. Chincholkar (Eds.), Microbial siderophores (pp. 219–231). Springer: Berlin Heidelberg.

    Google Scholar 

  35. 35.

    Marschner, P., & Crowley, D. E. (1998). Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas. Soil Biology and Biochemistry, 30(10), 1275–1280.

    CAS  Article  Google Scholar 

Download references

Funding

João M. Vindeirinho received the grant from the project PTDC-AGR-TEC/0458/2014—POCI-01-0145-FEDER-016681. This work is financed by the FEDER funds through the Operational Competitiveness Factors Program—COMPETE and by national funds through FCT—Foundation for Science and Technology within the scope of the project PTDC-AGR-TEC/0458/2014—POCI-01-0145-FEDER-016681.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Helena M.V.M. Soares or Eduardo V. Soares.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vindeirinho, J.M., Soares, H.M. & Soares, E.V. Modulation of Siderophore Production by Pseudomonas fluorescens Through the Manipulation of the Culture Medium Composition. Appl Biochem Biotechnol (2020). https://doi.org/10.1007/s12010-020-03349-z

Download citation

Keywords

  • Culture medium optimization
  • Bacterial nutrition
  • Pseudomonas fluorescens
  • Siderophores
  • Pyoverdine