Biosynthesis of Alanyl-Histidine Dipeptide Catalyzed by Papain Immobilized on Magnetic Nanocrystalline Cellulose in Deep Eutectic Solvents

Abstract

Papain (PA) immobilized onto magnetic nanocrystalline cellulose (PA@MNCC) was successfully fabricated and adopted as an efficient biocatalyst for the synthesis of N-(benzyloxycarbonyl)-alanyl-histidine (Z-Ala-His) dipeptide. Introducing deep eutectic solvents (DESs) as reaction media promoted the synthesis of the Z-Ala-His dipeptide. The effects of reaction conditions on the yield of papain catalytic Z-Ala-His were systematically investigated with the highest yield of 68.4%, which was higher than free papain (63.3%). Besides, this novel PA@MNCC composite can be easily recycled from the reaction system by magnetic forces. In a word, the PA@MNCC composite exhibited great potential for efficient biosynthesis of dipeptide in DESs.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

PA:

Papain

MNCC:

Magnetic nanocrystalline cellulose

PA@MNCC:

Papain immobilized onto magnetic nanocrystalline cellulose

Z-Ala-His:

N-(Benzyloxycarbonyl)-alanyl-histidine

DESs:

Deep eutectic solvents

Z-Ala-OMe:

N-(Benzyloxycarbonyl)-alanyl methyl ester

TEA:

Triethylamine

References

  1. 1.

    Chalamaiah, M., Yu, W., & Wu, J. (2018). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry, 245, 205–222.

    CAS  Article  Google Scholar 

  2. 2.

    Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52(9), 5377–5392.

    CAS  Article  Google Scholar 

  3. 3.

    Lange, L., Huang, Y., & Busk, P. K. (2016). Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Applied Microbiology and Biotechnology, 100(5), 2083–2096.

    CAS  Article  Google Scholar 

  4. 4.

    Nissen, P., Hansen, J., Ban, N., Moore, P. B., & Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289(5481), 920–930.

    CAS  Article  Google Scholar 

  5. 5.

    Canabady-Rochelle, L. L. S., Harscoat-Schiavo, C., Kessler, V., Aymes, A., Fournier, F., & Girardet, J. M. (2015). Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods. Food Chemistry, 183, 129–135.

    CAS  Article  Google Scholar 

  6. 6.

    Xu, X., You, M., Song, H., Gong, L., & Pan, W. (2018). Investigation of umami and kokumi taste-active components in bovine bone marrow extract produced during enzymatic hydrolysis and Maillard reaction. International Journal of Food Science and Technology, 53(11), 2465–2481.

    CAS  Article  Google Scholar 

  7. 7.

    Huang, Y., Fang, G., & Liu, L. (2016). Chemical synthesis of proteins using hydrazide intermediates. National Science Review, 3(1), 107–116.

    CAS  Article  Google Scholar 

  8. 8.

    Bolm, C., & Hernandez, J. G. (2018). From synthesis of amino acids and peptides to enzymatic catalysis: a bottom-up approach in mechanochemistry. ChemSusChem, 11(9), 1410–1420.

    CAS  Article  Google Scholar 

  9. 9.

    Wang, M., Qi, W., Yu, Q., Su, R., & He, Z. (2011). Kinetically controlled enzymatic synthesis of dipeptide precursor of L-alanyl-L-glutamine. Biotechnology and Applied Biochemistry, 58(6), 449–455.

    CAS  Article  Google Scholar 

  10. 10.

    Yadav, D. K., Yadav, N., Yadav, S., Haque, S., & Tuteja, N. (2016). An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry and Biophysics, 612, 57–77.

    CAS  Article  Google Scholar 

  11. 11.

    Yang, T., Zhao, L., Wang, J., Song, G., Liu, H., Cheng, H., & Yang, Z. (2017). Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 5(7), 5713–5722.

    CAS  Article  Google Scholar 

  12. 12.

    Sheldon, R. A., & Pereira, P. C. (2017). Biocatalysis engineering: the big picture. Chemical Society Reviews, 46(10), 2678–2691.

    CAS  Article  Google Scholar 

  13. 13.

    Toledo, M. L., Pereira, M. M., Freire, M. G., Silva, J. P. A., Coutinho, J. A. P., & Tavares, A. P. M. (2019). Laccase activation in deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 7(13), 11806–11814.

    CAS  Article  Google Scholar 

  14. 14.

    Pätzold, M., Siebenhaller, S., Kara, S., Liese, A., Syldatk, C., & Holtmann, D. (2019). Deep eutectic solvents as efficient solvents in biocatalysis. Trends in Biotechnology, 37(9), 943–959.

    Article  Google Scholar 

  15. 15.

    Khandelwal, S., Tailor, Y. K., & Kumar, M. (2016). Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. Journal of Molecular Liquids, 215, 345–386.

    CAS  Article  Google Scholar 

  16. 16.

    Xu, P., Zheng, G., Zong, M., Li, N., & Lou, W. (2017). Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing, 4(1), 34.

    Article  Google Scholar 

  17. 17.

    Cao, S., Xu, H., Li, X., Lou, W., & Zong, M. (2015). Papain@magnetic nanocrystalline cellulose nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 3(7), 1589–1599.

    CAS  Article  Google Scholar 

  18. 18.

    Li, H., Ni, Y., Cao, X., He, X., Li, G., Chen, K., Ouyang, P., Yang, J., & Tan, W. (2019). Highly active nanobiocatalysis in deep eutectic solvents via metal-driven enzyme-surfactant nanocomposite. Journal of Biotechnology, 292, 39–49.

    Article  Google Scholar 

  19. 19.

    Bondeson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2), 171–180.

    CAS  Article  Google Scholar 

  20. 20.

    Cao, S., Li, X., Lou, W., & Zong, M. (2014). Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization. Journal of Materials Chemistry B, 34, 5522.

    Article  Google Scholar 

  21. 21.

    Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 1, 70–71.

    Article  Google Scholar 

  22. 22.

    Gates, Z. P., Dhayalan, B., & Kent, S. B. H. (2016). Obviation of hydrogen fluoride in Boc chemistry solid phase peptide synthesis of peptide-(alpha) thioesters. Chemical Communications, 52(97), 13979–13982.

    CAS  Article  Google Scholar 

  23. 23.

    Shan, Y., Qi, W., Wang, M., Su, R., & He, Z. (2018). Kinetically controlled carboxypeptidase-catalyzed synthesis of novel antioxidant dipeptide precursor BOC-Tyr-Ala. Tianjin University, 24(6), 513–521.

    CAS  Article  Google Scholar 

  24. 24.

    Kuo, C., Lin, J., Chien, C., Tsai, C., Liu, Y., & Shieh, C. (2016). Formation of amide bond catalyzed by lipase in aqueous phase for peptide synthesis. Journal of Molecular Catalysis B: Enzymatic, 129, 15–20.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21908070, 21676104, 21878105), the National Key Research and Development Program of China (2018YFC1603400, 2018YFC1602100), China Postdoctoral Science Foundation (BX20180102, 2019 M652902), and the Fundamental Research Funds for the Central Universities (2019MS100, 2019PY15).

Author information

Affiliations

Authors

Contributions

Jun Xiong, Shi-Lin Cao, Min-Hua Zong, Wen-Yong Lou, and Xiaoling Wu conceived and designed the research; Jun Xiong and Shi-Lin Cao conducted the experiments; Jun Xiong, Shi-Lin Cao, and Xiaoling Wu analyzed and interpreted the data. Jun Xiong and Xiaoling Wu wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Wen-Yong Lou or Xiao-ling Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent for Publication

All authors approved the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Cao, S., Zong, M. et al. Biosynthesis of Alanyl-Histidine Dipeptide Catalyzed by Papain Immobilized on Magnetic Nanocrystalline Cellulose in Deep Eutectic Solvents. Appl Biochem Biotechnol (2020). https://doi.org/10.1007/s12010-020-03345-3

Download citation

Keywords

  • Papain
  • Nanocrystalline cellulose
  • Alanyl-histidine
  • Dipeptide synthesis
  • Deep eutectic solvents