Towards On-site Determination of Secretory IgA in Artificial Saliva with Gold-Linked Electrochemical Immunoassay (GLEIA) Using Portable Potentiostat and Disposable Printed Electrode

Abstract

Mental stress is closely connected with our physical and mental wellness. Therefore, stress measurement can contribute to assess our lifestyle and increase our quality of life. In this paper, we detect the secretory immunoglobulin A (sIgA), which is the candidate of salivary stress markers, with original electrochemical immunoassay: gold-linked electrochemical immunoassay (GLEIA). This biosensor is based on a sandwich-type immunosensor and adopts the electrochemical method to detect the reduction peak from Au nanoparticles linked to the secondary antibody. GLEIA is convenient and cost-effective that only requires a low sample volume (10 μL). In addition, the GLEIA show high sensitivity and selectivity. We obtained the linear response to relate the concentration of sIgA (10–300 ng/mL) in D-PBS buffer with the artificial saliva which includes salivary inorganic salt and typically glycoprotein (mucin). Furthermore, we obtained acceptable selectivity in the various solution with salivary proteins such as α-amylase, human serum albumin, immunoglobulin G (IgG), lysozyme, and mucin. In the future, we try to detect the sIgA in real saliva for on-site stress measurement using GLEIA and to integrate the various immunosensors for stress markers in saliva.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hammen, C. (2005). Stress and depression. Ann Rev Clin Psychol, 1(1), 293–319.

    Article  Google Scholar 

  2. 2.

    Kendler, K. S., & Gardner, C. O. (2016). Depressive vulnerability, stressful life events and episode onset of major depression: A longitudinal model. Psychol Med, 46(9), 1865–1874. https://doi.org/10.1017/s0033291716000349.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Ann Rev Physiol, 67(1), 259–284.

    CAS  Article  Google Scholar 

  4. 4.

    Schwab, K. O., Heubel, G., & Bartels, H. (1992). Free epinephrine, norepinephrine and dopamine in saliva and plasma of healthy-adults. Eur J Clin Chem Clin Biochem, 30(9), 541–544.

    CAS  PubMed  Google Scholar 

  5. 5.

    Willemsen, G., Ring, C., Carroll, D., Evans, P., Clow, A., & Hucklebridge, F. (1998). Secretory immunoglobulin A and cardiovascular reactions to mental arithmetic and cold pressor. Psychophysiology, 35(3), 252–259.

    CAS  Article  Google Scholar 

  6. 6.

    Deinzer, R., Kleineidam, C., Stiller-Winkler, R., Idel, H., & Bachg, D. (2000). Prolonged reduction of salivary immunoglobulin A (sIgA) after a major academic exam. Int J Psychophysiol, 37(3), 219–232.

    CAS  Article  Google Scholar 

  7. 7.

    Obayasi, K. (2013). Salivary mental stress proteins. Clinica Cnimica Acta, 425, 196–201.

    Article  Google Scholar 

  8. 8.

    Christopher, G. E., Jos, A. B., & Nicolas, R. (2019). Salivary biomarkers in psychoneuroimmunology. Curr Opin Behav Sci, 28, 58–65.

    Article  Google Scholar 

  9. 9.

    Cláudia, M. A., Leonardo V. G. M. Jéssica, F. F. O. et al, (2019). Salivary biomarkers for caries susceptibility and mental stress in individuals with facial pain. The Journal of Craniomandibular & Sleep Practice, early access.

  10. 10.

    Doepel, M., Söderling, E., Ekberg, E. L., et al. (2009). Salivary cortisol and IgA levels in patients with myofascial pain treated with occlusal appliances in the short term. J Oral Rehabil, 36(3), 210–216.

    CAS  Article  Google Scholar 

  11. 11.

    Hucklebridge, F., Clow, A., & Evans, P. (1998). The relationship between salivary secretory immunoglobulin A and cortisol: Neuroendocrine response to awakening and the diurnal cycle. Int J Psychophysiol, 31(1), 69–76.

    CAS  Article  Google Scholar 

  12. 12.

    Kang, J. H., & Kho, H. S. (2018). Blood contamination in salivary diagnostics: Current methods and their limitations. Clin Chem Lab Med, 57, 1115–1124.

    Article  Google Scholar 

  13. 13.

    Ahmed, M. U., Hossain, M. M., Safavieh, M., et al. (2015). Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit Rev Biotechnol, 24, 1–11.

    Article  Google Scholar 

  14. 14.

    Yamanaka, K., Saito, M., Kondoh, K., et al. (2011). Rapid detection for primary screening of influenza A virus : Microfluidic RT-PCR chip and electrochemical DNA sensor. Analyst, 136(10), 2064–2068.

    CAS  Article  Google Scholar 

  15. 15.

    Inoue, Y., Saito, M., Yoshikawa, H., et al. (2017). Quenched Electrochemiluminescence imaging using electro-generated substrate for sensitive detection of catalase as potential enzyme reporter system. Electrochim Acta, 240, 447–455.

    CAS  Article  Google Scholar 

  16. 16.

    Higashi, Y., Mazumder, J., Yoshikawa, H., Saito, M., & Tamiya, E. (2018). Chemically regulated ROS generation from gold nanoparticles for enzyme-free electrochemiluminescent immunosensing. Anal Chem, 90(9), 5773–5780.

    CAS  Article  Google Scholar 

  17. 17.

    Biyani, M., Biyani, R., Tsuchihashi, T., et al. (2017). DEP-on-go for simultaneous sensing of multiple heavy metals pollutants in environmental samples. Sensors, 45, 1–14.

    Google Scholar 

  18. 18.

    Xuan, V. N., Miyuki, C., et al. (2013). Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropin hormone. Biosens Bioelectron, 42, 592–597.

    Article  Google Scholar 

  19. 19.

    Xuan, V. N., Xuan, H. N., & Takamura, Y. (2019). Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode. Mater Chem Phys, 227, 123–129.

    Article  Google Scholar 

  20. 20.

    Idegami, K., Chikae, M., Kerman, K., Nagatani, N., Yuhi, T., Endo, T., & Tamiya, E. (2008). Gold nanoparticle-based redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone. Electroanalysis, 20(1), 14–21.

    CAS  Article  Google Scholar 

  21. 21.

    Salivary Secretory IgA ELISA kit, Available from https://salimetrics.com/assay-kit/salivary-secretory-iga-elisa-kit/. Accessed March 8, 2020.

  22. 22.

    Åsa, F., Anna, M., Åsa, E., et al. (2015). Nine surface plasmon resonance assays for specific protein quantitation during cell culture and process development. Anal Biochem, 477, 1–9.

    Article  Google Scholar 

  23. 23.

    Shu, J., Saito, M., Murahashi, M., et al. (2017). Pressure free nanoimprinting lithography using ladder-type HSQ material for LSPR biosensor chip. Sensors Actuators B Chem, 242, 47–55.

    Article  Google Scholar 

  24. 24.

    Hemmi, A., Usui, T., Moto, A., et al. A surface plasmon resonance sensor on a compact disk-type microfluidic device. J Sep Sci, 34, 2913–2919.

  25. 25.

    Panu, J., Rantonen, F., & Jukka, H. M. (2000). Correlations between total protein, lysozyme, immunoglobulins, amylase, and albumin in stimulated whole saliva dualing daytime. Acta Odontol Scand, 58, 160–165.

    Article  Google Scholar 

  26. 26.

    Minamiki, T., Minami, T., Sasaki, Y., et al. (2015). An organic field-effect transistor with an extended-gate electrode capable of detecting human immunoglobulin A. Anal Sci, 31(7), 725–728.

    CAS  Article  Google Scholar 

  27. 27.

    Ohno, R., Ohnuki, H., Wang, H., et al. (2019). Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosens Bioelectron, 40, 422–426.

    Article  Google Scholar 

  28. 28.

    Zuaznabar-Gardona, J. C., & Alex, F. (2019). Development of highly sensitive IgA immunosensors based on co- electropolymerized L-DOPA / dopamine carbon nano-onion modified electrodes. Biosens Bioelectron, 141, 111357.

  29. 29.

    Luis, C. R. R., Josep, L. A. S., Pablo, L. S., et al. (2012). Amperometric immunosensor for the determination of IgA deficiency in human serum samples. Biosens Bioelectron, 33, 134–138.

    Article  Google Scholar 

Download references

Funding

This research was partially supported by JSPS KAKENHI Grant Number JP15H05769.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tamiya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2071 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osaki, S., Wakida, S., Saito, M. et al. Towards On-site Determination of Secretory IgA in Artificial Saliva with Gold-Linked Electrochemical Immunoassay (GLEIA) Using Portable Potentiostat and Disposable Printed Electrode. Appl Biochem Biotechnol (2020). https://doi.org/10.1007/s12010-020-03332-8

Download citation

Keywords

  • SPCE
  • sIgA
  • Electrochemical biosensor
  • Gold nanoparticles
  • Immunoglobulin A
  • Stress marker
  • Immunosensor