Core-Shell Encapsulation of Lipophilic Substance in Jelly Fig (Ficus awkeotsang Makino) Polysaccharides Using an Inexpensive Acrylic-Based Millifluidic Device

Abstract

The polysaccharides extracted from the achenes of jelly fig, Ficus awkeotsang Makino, were mainly composed of low methyl pectin and used as a novel shell material for encapsulating lipophilic bioactives in the core of microcapsule. The polysaccharide microcapsules with oil core were prepared using a novel acrylic-based millifluidic device developed in this study. To investigate the physiochemical properties of and find the suitable formula of polysaccharide shells, the films casted with jelly fig polysaccharide were thoroughly characterized. For the preparation of microcapsules, the millifluidic device was optimized by controlling the flow rate to obtain uniform spherical shape with a core diameter of 1.4−1.9 mm and the outer diameter of 2.1–2.8 mm. The encapsulation efficiency was around 90%, and the microcapsules displayed a clear boundary between the polysaccharide shell and oil core. Encapsulation of curcumin in the microcapsules was prepared to test the applicability of the device and processes developed in this study, and the results showed that the microencapsulation could enhance the stability of curcumin against external environment. Overall, the results suggested that the jelly fig polysaccharides and the developed millifluidic device can be useful for the preparation of core-shell microcapsules for encapsulation of lipophilic bioactives.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Chan, E.-S. (2011). Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers, 84, 1267–1275.

    CAS  Article  Google Scholar 

  2. 2.

    Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols – A review. Trends in Food Science & Technology, 21, 510–523.

    CAS  Article  Google Scholar 

  3. 3.

    Sinha, A., & Suresh, P. (2019). Enhanced induction of apoptosis in HaCaT cells by luteolin encapsulated in PEGylated liposomes—Role of Caspase-3/Caspase-14. Applied Biochemistry and Biotechnology, 188(1), 147–164.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Zhang, Y., Zan, Y., Chen, H., Wang, Z., Ni, T., Liu M. and Pei, R. (2019). Bone marrow mesenchymal stem cells encapsulated in a hydrogel system via bioorthogonal chemistry for liver regeneration. ACS Appl Bio Mater, 2, 2444–2452.

  5. 5.

    Gabrielczyk, J., Duensing, T., Buchholz, S., Schwinges, A., & Jördening, H.-J. (2018). A comparative study on immobilization of fructosyltransferase in biodegradable polymers by electrospinning. Applied Biochemistry and Biotechnology, 185(3), 847–862.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Gür, S. D., İdil, N., & Aksöz, N. (2018). Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads. Applied Biochemistry and Biotechnology, 184, 538–552.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3, 793–829.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Cheng, W.-C., He, Y., Chang, A.-Y., & Que, L. (2013). A microfluidic chip for controlled release of drugs from microcapsules. Biomicrofluidics, 7, 64102–64102.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494–506.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Cheng, Y.-S., Lu, P.-M., Huang, C.-Y., & Wu, J.-J. (2017). Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. The Journal of Supercritical Fluids, 130, 246–252.

    CAS  Article  Google Scholar 

  11. 11.

    Pimentel-Moral, S., Verardo, V., Robert, P., Segura-Carretero A. and Martínez-Férez, A. (2016), In encapsulations. In: Grumezescu, A. M., (eds) Academic Press, pp. 559-595.

  12. 12.

    Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., Niemeyer, P., Smirnova, I., & Milow, B. (2018). Review on the production of polysaccharide aerogel particles. Materials (Basel), 11, 2144.

    Article  CAS  Google Scholar 

  13. 13.

    Wang, Y. T., Lien, L. L., Chang, Y. C., & Wu, J. S. B. (2013). Pectin methyl esterase treatment on high-methoxy pectin for making fruit jam with reduced sugar content. Journal of the Science of Food and Agriculture, 93(2), 382–388.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Aspinall, G., Craig, J., & Whyte, J. J. C. R. (1968). Lemon-peel pectin: Part I. Fractionation and partial hydrolysis of water-soluble pectin. Carbohydrate Research, 7, 442–452.

    CAS  Article  Google Scholar 

  15. 15.

    Lin, T.-P., Liu, C.-C., Chen, S.-W., & Wang, W.-Y. J. P. p. (1989). Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino achenes. Plant Physiology, 91, 1445–1453.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Jiang, C.-M., Lai, Y.-J., Lee, B.-H., Chang, W.-H., Wu, M.-C., & Chang, H.-M. J. (2002). Changes in physico-chemical properties of pectin from jelly fig (Ficus awkeotsang Makino) seeds during extraction and gelling. Food Research International, 35, 31–35.

    CAS  Article  Google Scholar 

  17. 17.

    Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88, 146–162.

    CAS  Article  Google Scholar 

  18. 18.

    Salazar-Bautista, S.-C., Chebil, A., Pickaert, G., Gaucher, C., Jamart-Gregoire, B., Durand, A., & Leonard, M. (2017). Encapsulation and release of hydrophobic molecules from particles of gelled triglyceride with aminoacid-based low-molecular weight gelators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514, 11–20.

    CAS  Article  Google Scholar 

  19. 19.

    Lengyel, M., Kállai-Szabó, N., Antal, V., Laki, A. J., & Antal, I. (2019). Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Scientia Pharmaceutica, 87, 20.

    CAS  Article  Google Scholar 

  20. 20.

    Duncanson, W. J., Lin, T., Abate, A. R., Seiffert, S., Shah, R. K., & Weitz, D. A. (2012). Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab on a Chip, 12(12), 2135–2145.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L., Choi, C.-H., Xu, J., Zhang, A., Lee, H., & Weitz, D. A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15), 5646–5683.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Whelehan, M., & Marison, I. W. (2011). Microencapsulation using vibrating technology. Journal of Microencapsulation, 28(8), 669–688.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Seiffert, S. (2013). Microgel Capsules Tailored by Droplet-Based Microfluidics. Chemphyschem, 14, 295–304.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Costa, A. L. R., Gomes, A., Ushikubo, F. Y., & Cunha, R. L. (2017). Gellan microgels produced in planar microfluidic devices. Journal of Food Engineering, 209, 18–25.

    CAS  Article  Google Scholar 

  25. 25.

    Forbes, N., Hussain, M. T., Briuglia, M. L., Edwards, D. P., Ter Horst, J. H., Szita, N., & Perrie, Y. (2019). Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. International Journal of Pharmaceutics, 556, 68–81.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Nativel, F., Renard, D., Hached, F., Pinta, P.-G., D’Arros, C., Weiss, P., Le Visage, C., Guicheux, J., Billon-Chabaud, A., & Grimandi, G. (2019). Application of millifluidics to encapsulate. Novel Biomaterials for Tissue Engineering, 2018(19), 162.

    Google Scholar 

  27. 27.

    Sun, X.-T., Liu, M., & Xu, Z.-R. (2014). Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta, 121, 163–177.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Nativel, F., Renard, D., Hached, F., Pinta, P.-G., D'Arros, C., Weiss, P., Le Visage, C., Guicheux, J., Billon-Chabaud, A., & Grimandi, G. (2018). Application of millifluidics to encapsulate and support viable human mesenchymal stem cells in a polysaccharide hydrogel. International Journal of Molecular Sciences, 19, 1952.

    PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Engl, W., Backov, R., & Panizza, P. (2008). Controlled production of emulsions and particles by milli- and microfluidic techniques. Current Opinion in Colloid & Interface Science, 13, 206–216.

    CAS  Article  Google Scholar 

  30. 30.

    Lukyanova, L., Séon, L., Aradian, A., Mondain-Monval, O., Leng, J., & Wunenburger, R. (2013). Millifluidic synthesis of polymer core-shell micromechanical particles: Toward micromechanical resonators for acoustic metamaterials. Journal of Applied Polymer Science, 128, 3512–3521.

    CAS  Article  Google Scholar 

  31. 31.

    Martins, E., Poncelet, D., Marquis, M., Davy, J., & Renard, D. (2017). Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocolloids, 63, 447–456.

    CAS  Article  Google Scholar 

  32. 32.

    Gerber, L. C., Kim, H., & Riedel-Kruse, I. H. (2015). Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping. Biomicrofluidics, 9, 064105.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Islam, M. M., Loewen, A., & Allen, P. B. (2018). Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles. Scientific Reports, 8, 8763.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Marques, M., Löbenberg, R., & Almukainzi, M. (2011). Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 18, 15–28.

    CAS  Article  Google Scholar 

  35. 35.

    Park, C., Meghani, N. M., Shin, Y., Oh, E., Park, J.-B., Cui, J.-H., Cao, Q.-R., Tran, T. T.-D., Tran, P. H.-L., & Lee, B.-J. (2019). Investigation of Crystallization and Salt Formation of Poorly Water-Soluble Telmisartan for Enhanced Solubility. Pharmaceutics, 11, 102.

    CAS  PubMed Central  Article  Google Scholar 

  36. 36.

    Fishman, M. L., Chau, H. K., Hoagland, P., & Ayyad, K. (1999). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research, 323, 126–138.

    Article  Google Scholar 

  37. 37.

    McHugh, T. H., Avena-Bustillos, R., & Krochta, J. (1993). Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58, 899–903.

    CAS  Article  Google Scholar 

  38. 38.

    Mohammadi, Z., Shalavi, S., & Jafarzadeh, H. (2013). Ethylenediaminetetraacetic acid in endodontics. European Journal of Dentistry, 7(Suppl 1), S135–S142.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Suzuno, H., Kinugasa, S., Nakahara, H., & Kawabata, A. (1997). Molecular characteristics of water-soluble polysaccharide extracted from jelly fig (Ficus awkeotsang Makino) seeds. Bioscience, Biotechnology, and Biochemistry, 61, 1491–1494.

    CAS  Article  Google Scholar 

  40. 40.

    Singthong, J., Ningsanond, S., Cui, S. W., & Douglas Goff, H. (2005). Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 19, 793–801.

    CAS  Article  Google Scholar 

  41. 41.

    Tibbits, C. W., MacDougall, A. J., & Ring, S. G. J. C. (1998). Calcium binding and swelling behaviour of a high methoxyl pectin gel. Carbohydrate Research, 310, 101–107.

    CAS  Article  Google Scholar 

  42. 42.

    Axelos, M., & Thibault, J. (1991). The chemistry of low-methoxyl pectin gelation. The Chemistry and Technology of Pectin, 6, 109–108.

    Article  Google Scholar 

  43. 43.

    Jiang, C.-M., Lai, Y.-J., Lee, B.-H., Chang, W.-H., & Chang, H.-M. (2001). De-esterification and transacylation reactions of pectinesterase from jelly fig (Ficus awkeotsang Makino) achenes. Journal of Food Science, 66, 810–815.

    CAS  Article  Google Scholar 

  44. 44.

    Tako, M. (2015). The principle of polysaccharide gels. Advances in Bioscience and Biotechnology, 6, 22.

    CAS  Article  Google Scholar 

  45. 45.

    Fluhr, J., Darlenski, R., & Surber, C. J. B. J. (2008). Glycerol and the skin: holistic approach to its origin and functions. The British Journal of Dermatology, 159, 23–34.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Yang, L., & Paulson, A. J. F. R. (2000). Mechanical and water vapour barrier properties of edible gellan films. Food Research International, 33, 563–570.

    CAS  Article  Google Scholar 

  47. 47.

    Kristen, N., & von Klitzing, R. (2010). Effect of polyelectrolyte/surfactant combinations on the stability of foam films. Soft Matter, 6, 849–861.

    CAS  Article  Google Scholar 

Download references

Funding

The funding of this work was supported by the Ministry of Science and Technology, Taiwan (MOST107-2622-E-224-002-CC3 and MOST 106-2622-E-224-007-CC3).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Shen Cheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponrasu, T., Yang, R., Chou, T. et al. Core-Shell Encapsulation of Lipophilic Substance in Jelly Fig (Ficus awkeotsang Makino) Polysaccharides Using an Inexpensive Acrylic-Based Millifluidic Device. Appl Biochem Biotechnol 191, 360–375 (2020). https://doi.org/10.1007/s12010-019-03209-5

Download citation

Keywords

  • Jelly fig
  • Ficus awkeotsang Makino
  • Pectin
  • Millifluidic device
  • Encapsulation
  • Core-shell
  • Microcapsule