Skip to main content

Advertisement

Log in

Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The composition of brackish groundwater from Brazilian backlands contains important elements necessary for metabolism in microalgae. This study evaluated the use of 100% brackish groundwater with different amounts of Zarrouk nutrients for Spirulina sp. LEB 18 cultivation. The growth parameters and biomass composition, including the concentrations of proteins, carbohydrates, ash, lipids, and fatty acids, were evaluated. The best growth parameter results were obtained in the assay using 100% brackish groundwater and only 25% of Zarrouk nutrients, which were equal to those obtained for the control culture. The concentrations of carbohydrates and polyunsaturated fatty acids were increased by as much as 4- and 3.3-fold, respectively, when brackish groundwater was used in the cultures. The lipid profile demonstrated that the biomass had the potential for use in biodiesel production. The use of brackish groundwater is a sustainable, economical way to obtain high-quality biomass for different applications during Spirulina sp. LEB 18 cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McNeill, K., Macdonald, K., Singh, A., & Binns, A. D. (2017). Food and water security: Analysis of integrated modeling platforms. Agricultural Water Management, 194, 100–112.

    Google Scholar 

  2. Sánchez, A. S., Nogueira, I. B. R., & Kalid, R. A. (2015). Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalination., 364, 96–107.

    Google Scholar 

  3. Belay, A., Kato, T., & Ota, Y. (1996). Spirulina (Arthrospira): potential application as an animal feed supplement. Journal of Applied Phycology, 8(4-5), 303–311.

    Google Scholar 

  4. Vonshak, A. (1997). Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. London: Taylor and Francis.

    Google Scholar 

  5. Silva, C. E. F., & Bertucco, A. (2016). Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, 51(11), 1833–1842.

    CAS  Google Scholar 

  6. Shirazi, H. M., Sabet, J. K., & Ghotbi, C. (2017). Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresource Technology, 239, 378–386.

    Google Scholar 

  7. Matos, A. P., Moecke, E. H. S., & Sant’Anna, E. S. (2017). The use of desalination concentrate as a potential substrate for microalgae cultivation in Brazil. Algal Research, 24, 505–508.

    Google Scholar 

  8. Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555.

    CAS  Google Scholar 

  9. Volkmann, H., Imianovsky, U., Oliveira, J. L. B., & Sant’Anna, E. S. (2007). Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: Protein content and amino-acid profile. Brazilian Journal of Microbiology, 39, 98–101.

    Google Scholar 

  10. Matos, A. P., Feller, R., Moecke, E. H. S., & Sant’Anna, E. S. (2015). Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate. Bioresource Technology, 197, 48–55.

    CAS  PubMed  Google Scholar 

  11. Matos, A. P., Ferreira, W. B., Torres, R. O. C., Morioka, L. R. I., Canella, M. H. M., Rotta, J., Silva, J. T., Moecke, E. H. S., & Sant’Anna, E. S. (2014). Optimization of biomass production of Chlorella vulgaris grown in desalination concentrate. Journal of Applied Phycology, 27, 1473–1483.

    Google Scholar 

  12. Costa, J. A. V., Colla, L. M., & Filho, P. D. (2004). Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 92(3), 237–241.

    CAS  PubMed  Google Scholar 

  13. APHA. (2005). Standard Methods for the examination of water and wastewater. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  14. Morais, M. G., & Costa, J. A. V. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.

    CAS  PubMed  Google Scholar 

  15. Costa, J. A. V., Colla, L. M., Duarte Filho, P., Kabke, P. K., & Weber, A. (2002). Modelling of Spirulina platensis growth in fresh water using response surface methodology, World J. Microbial Biotechnology, 18(7), 603–607.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  PubMed  Google Scholar 

  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    CAS  Google Scholar 

  18. AOAC (Ed.). (1995). Official Methods of Analysis of the association of analytical chemists international (16th ed.). Arlington: AOAC International.

    Google Scholar 

  19. Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509.

    CAS  PubMed  Google Scholar 

  20. Andrade, B. B., Cardoso, L. G., Assis, D. J., Costa, J. A. V., Druzian, J. I., & Lima, S. T. C. (2019). Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresource Technology, 284, 340–348.

    CAS  PubMed  Google Scholar 

  21. Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Carvalho, G. C., Nascimento, M. A., Souza, C. O., Druzian, J. I., Hussain, J., & Liao, W. (2014). Microalgae versus land crops as feedstock for biodiesel: productivity, quality and standard compliance. Bioenergy Research, 7, 1002–1013.

    CAS  Google Scholar 

  22. Freitas, B. C. B., Bracher, E. H., Morais, E. G., Atala, D. I. P., Morais, M. G., & Costa, J. A. V. (2017). Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content. Environmental Technology, 40, 1062–1070.

    PubMed  Google Scholar 

  23. Rosa, G. M., Moraes, L., Cardias, B. B., Souza, M. R., & Costa, J. A. V. (2015). Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresource Technology, 192, 321–327.

    CAS  PubMed  Google Scholar 

  24. Borowitzka, M. A., & Moheimani, N. R. (2013). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 18, 13–25.

    Google Scholar 

  25. Tomaselli, L. (1997). Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina). In A. Vonshak (Ed.), Spirulina platensis (Arthrospira) Physiology, cell biology and biotechnology (pp. 01–16). London: Taylor & Francis.

    Google Scholar 

  26. Leema, J. T. M., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., & Karthikayulu, S. (2010). High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221–9227.

    PubMed  Google Scholar 

  27. Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.

    CAS  PubMed  Google Scholar 

  28. Geider, R. J., & La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37(1), 1–17.

    Google Scholar 

  29. Raven, J. A., & Beardall, J. (2004). Carbohydrate metabolism and respiration in algae. In A. W. D. Larkum, S. E. Douglas, & J. A. Raven (Eds.), Photosynthesis in algae, Advances in photosynthesis and respiration (pp. 205–224). Dordrecht: Springer.

    Google Scholar 

  30. Li, K., Liu, S., & Liu, X. (2014). An overview of algae bioethanol production. International Journal of Energy Research, 38(8), 965–977.

    CAS  Google Scholar 

  31. Ma, Y., Gao, Z., Wang, Q., & Liu, Y. (2018). Biodiesels from microbial oils: Opportunity and challenges. Bioresource Technology, 263, 631–641.

    CAS  PubMed  Google Scholar 

  32. Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507.

    CAS  Google Scholar 

  33. Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, A. V. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244(Pt 2), 1216–1226.

    CAS  PubMed  Google Scholar 

  34. Kirst, G. O. (1989). Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 21–53.

    Google Scholar 

  35. Garcia, J. M. R., Fernández, F. G. A., & Sevilla, J. M. F. (2012). Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresource Technology, 112, 164–170.

    Google Scholar 

  36. Zhang, X., Yuan, H., Jiang, Z., Lin, D., & Zhang, X. (2018). Impact of surface tension of wastewater on biofilm formation of microalgae Chlorella sp. Bioresource Technology, 266, 498–506.

    CAS  PubMed  Google Scholar 

  37. Ye, Y., Huang, Y., Xia, A., Fu, Q., Liao, Q., Zeng, W., Zheng, Y., & Zhu, X. (2018). Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Bioresource Technology, 270, 80–87.

    CAS  PubMed  Google Scholar 

  38. Singh, R., Parihar, P., Singh, M., Badguz, A., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2017). Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Frontiers in Microbiology, 8, 1–37.

    Google Scholar 

  39. Fon Sing, S. F., Isdepesky, A., Borowitzka, M. A., & Lewis, D. M. (2014). Pilot scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresource Technology, 161, 47–54.

    CAS  PubMed  Google Scholar 

  40. Fujii, S., Uenaka, M., Nakayama, S., Yamamoto, R., & Mantani, S. (2001). Effects of sodium chloride on the fatty acids composition in Boekelovia hooglandii (Ochromonadales, Chrysophyceae). Phycological Research, 49(1), 73–77.

    CAS  Google Scholar 

  41. Sun, X. M., Geng, L. J., Ren, L. J., Ji, X. J., Hao, N., Chen, K. Q., & Huang, H. (2018). Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresource Technology, 250, 868–876.

    CAS  PubMed  Google Scholar 

  42. Plouguerné, E., Da, G. B., Pereira, R. C., & Barretobergter, E. (2014). Glycolipids from seaweeds and their potential biotechnological applications. Frontiers in Cellular and Infection Microbiology, 4, 174.

    PubMed  PubMed Central  Google Scholar 

  43. Ruxton, C. H., Calder, P. C., Reed, S. C., & Simpson, M. J. (2005). The impact of long chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews, 18, 113–129.

    CAS  PubMed  Google Scholar 

  44. Kondamudi, N., Strull, J., Misra, M., & Mohapatra, S. (2009). A green process for producing biodiesel from feater meal. Journal of Agricultural and Food Chemistry, 57(14), 6163–6166.

    CAS  PubMed  Google Scholar 

  45. Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059–1070.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CAPES (Coordination for the Improvement of Higher Education Personnel), MCTIC (Ministry of Science Technology, Innovation and Communications), and the Program to Support the Production of Academic Publications/PROPESP/FURG/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alberto Vieira Costa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, J.H., Cardoso, L.G., de Souza, C.O. et al. Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production. Appl Biochem Biotechnol 190, 907–917 (2020). https://doi.org/10.1007/s12010-019-03126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03126-7

Keywords

Navigation