Skip to main content
Log in

Pretreatment Efficiency Using Autoclave High-Pressure Steam and Ultrasonication in Sugar Production from Liquid Hydrolysates and Access to the Residual Solid Fractions of Wheat Bran and Oat Hulls

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the combination of physical and chemical pretreatments of wheat bran (WB) and oat hulls (OH) to obtain fermentable sugars and a residual solid fraction with increased susceptibility to enzymatic hydrolysis. High-pressure steam in an autoclave and ultrasonication were employed as pretreatments, and for both processes, WB and OH were treated with sulfuric acid (H2SO4), neutral medium (H2O) and sodium hydroxide (NaOH). Autoclave high-pressure steam in an acid medium was the most effective for the release of sugars (total sugars, xylose and glucose) from liquid hydrolysates and for the modification of the residual solid fraction. The cellulose content of the WB residual solid fraction increased from 7.19 to 39.17%, the lignin fraction of WB decreased from 6.40 to 3.21%, the cellulose content of OH increased from 31.16 to 61.53%, and lignin fraction of OH decreased from 18.12 to 7.24%, resulting in materials more susceptible to enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bhowmick, G. D., Sarmah, A. K., & Sen, R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 247, 1144–1154.

    PubMed  Google Scholar 

  2. Zuin, V. G., & Ramin, L. Z. (2018). Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Topics in Current Chemistry, 3, 1–54.

    Google Scholar 

  3. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & and biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    CAS  Google Scholar 

  4. Sousa-Aguiar, E. F., Appel, L. G., Zonetti, P. C., do C Fraga, A., Bicudo, A. A., & Fonseca, I. (2014). Some important catalytic challenges in the bioethanol integrated biorefinery. Catalysis Today, 234, 13–23.

    CAS  Google Scholar 

  5. Silva, C. M. S., de C O Carneiro, A., Vital, B. R., Figueiró, C. G., de F Fialho, L., de Magalhães, M. A., Carvalho, A. G., & Cândido, W. L. (2018). Biomass torrefaction for energy purposes – Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews, 82, 2426–2432.

    Google Scholar 

  6. Forster-Carneiro, T., Berni, M. D., Dorileo, I. L., & Rostagno, M. A. (2013). Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resources, Conservation and Recycling, 77, 78–88.

    Google Scholar 

  7. Harvesting 2017/2018 of Brazil. Conab, Nacional Supply Company, E-Publishing. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/18_03_13_14_15_33_grao_marco_2018.pdf. Accessed April 2018.

  8. Paschoal, G. B., Muller, C. M. O., Carvalho, G. M., Tischer, C. A., & Mali, S. (2015). Isolation and characterization of nanofibrillated cellulose from oat hulls. Quimica Nova, 38, 478–482.

    CAS  Google Scholar 

  9. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63.

    PubMed  Google Scholar 

  10. Huang, W., Wang, E., Chang, J., Wang, P., Yin, Q., Liu, C., Zhu, Q., & Lu, F. (2017). Effect of physicochemical pretreatments and enzymatic hydrolysis on corn straw degradation and reducing sugar yield. BioResource., 12, 7002–7015.

    CAS  Google Scholar 

  11. Harun, M. Y., Dayang, R. A. B., Zainal Abidin, Z., & Yunus, R. (2011). Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresource Technology, 102(8), 5193–5519.

    CAS  PubMed  Google Scholar 

  12. Ibrahim, M. M., Agblevor, F. A., & El-Zawawy, W. K. (2010). Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResource., 5, 379–418.

    Google Scholar 

  13. Rehman, M. S. U., Kim, I., Kim, K. H., & Han, J. I. (2014). Optimization of sono-assisted dilute sulfuric acid process for simultaneous pretreatment and saccharification of rice straw. International journal of Environmental Science and Technology, 11(2), 543–550.

    CAS  Google Scholar 

  14. Santos, J. R. A., & Gouveia, E. R. (2009). Production of bioethanol from sugarcane bagasse. Brazillian Journal of Agroindustrial Products, 11, 27–33.

  15. Sun, X. F., Xu, F., Sun, R. C., Fowler, P., & Baird, M. S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340(1), 97–106.

    CAS  PubMed  Google Scholar 

  16. Velmurugan, R., & Muthukumar, K. (2012). Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technology, 112, 293–299.

    CAS  PubMed  Google Scholar 

  17. Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass ? An overview. Bioresource Technology, 199, 76–82.

    CAS  PubMed  Google Scholar 

  18. Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753.

    CAS  PubMed  Google Scholar 

  19. Garcia-Maraver, A., Salvachúa, D., Martínez, M. J., Diaz, L. F., & Zamorano, M. (2013). Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Management, 33(11), 2245–2249.

    CAS  PubMed  Google Scholar 

  20. Ramos, L. P. (2003). The chemistry involved in the steam treatment of lignocellulosic materials. Quimica Nova, 26(6), 863–871.

    CAS  Google Scholar 

  21. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.

    CAS  PubMed  Google Scholar 

  22. Abdullah, M. A., Nazir, M. S., Raza, M. R., Wahjoedi, B. A., & Yussof, A. W. (2016). Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. Journal of Cleaner Production, 126, 686–697.

    CAS  Google Scholar 

  23. Cara, C., Ruiz, E., Oliva, J. M., Sáez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99(6), 1869–1876.

    CAS  PubMed  Google Scholar 

  24. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.

    CAS  PubMed  Google Scholar 

  25. Subhedar, P. B., & Gogate, P. R. (2014). Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1), 216–225.

    CAS  PubMed  Google Scholar 

  26. Subhedar, P. B., Ray, P., & Gogate, P. R. (2018). Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics Sonochemistry, 40(Pt B), 140–150.

    CAS  PubMed  Google Scholar 

  27. Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn Stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy, 3(1), 25–31.

    CAS  Google Scholar 

  28. Bhutto, A. W., Qureshi, K., Harijan, K., Abro, R., Abbas, T., Bazmi, A. A., Karim, S., & Yu, G. (2017). Insight into progress in pre-treatment of lignocellulosic biomass. Energy., 122, 724–745.

    CAS  Google Scholar 

  29. Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances colorimetric method determination of sugars and substances. Analytical Chemistry, 23, 350–356.

    Google Scholar 

  30. Pham, P. J., Hernandez, R., French, W. T., Estill, B. G., & Mondala, A. H. (2011). A spectrophotometric method for quantitative determination of xylose in fermentation medium. Biomass and Bioenergy, 35(7), 2814–2821.

    CAS  Google Scholar 

  31. Pauli, E. D., Barbieri, F., Garcia, P. S., Madeira, T. B., Acquaro, V. R., Scarminio, I. S., Camara, C. A. P., & Nixdorf, S. L. (2014). Detection of ground roasted coffee adulteration with roasted soybean and wheat. Food Research International, 61, 112–119.

    CAS  Google Scholar 

  32. Van Soest, P. J. (1965). Symposium on factors influencing the voluntary intake of herbage by ruminants: Voluntary intake in relation to chemical composition and digestibility. Journal of Animal Science, 24(3), 834–843.

    Google Scholar 

  33. TAPPI TEST METHOD T222 om-88. (1999). Acid-insoluble lignin in wood and pulp. In In: Tappi test methods. Atlanta: Tappi Press.

    Google Scholar 

  34. Chen, W. H., Pen, B. L., Yu, C. T., & Hwang, W. S. (2011). Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology, 102(3), 2916–2924.

    CAS  PubMed  Google Scholar 

  35. Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., Novalin, S., & Kneifel, W. (2014). Wheat bran-based biorefinery 2: Valorization of products. LWT- Food Science and Technology, 56(2), 222–231.

    CAS  Google Scholar 

  36. Ranjan, A., & Moholkar, V. S. (2013). Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel, 112, 567–571.

    CAS  Google Scholar 

  37. Jiang, S. T., & Guo, N. (2016). The steam explosion pretreatment and enzymatic hydrolysis of wheat bran. Energy Sources Part A Recovery Utilization and Environmental Effects, 38, 295–299.

    CAS  Google Scholar 

  38. Reisinger, M., Tirpanalan, Ö., Huber, F., Kneifel, W., & Novalin, S. (2014). Investigations on a wheat bran biorefinery involving organosolv fractionation and enzymatic treatment. Bioresource Technology, 170, 53–61.

    CAS  PubMed  Google Scholar 

  39. Tamanini, C., & Hauly, M. C. O. (2004). Agroindustrial wastes for the biotechnological production of xylitol. Semina: Ciencias Agrarias, 25(4), 315–330.

    Google Scholar 

  40. Tirpanalan, Ö., Reisinger, M., Huber, F., Kneifel, W., & Novalin, S. (2014). Wheat bran biorefinery: An investigation on the starch derived glucose extraction accompanied by pre- and post-treatment steps. Bioresource Technology, 163, 295–299.

    CAS  PubMed  Google Scholar 

  41. Auxenfans, T., Crônier, D., Chabbert, B., & Paës, G. (2017). Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnology for Biofuels, 10, 1–16.

    Google Scholar 

  42. Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., Manzanares, P., & Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw, in: Twenty-seventh symposium on biotechnology for fuels and chemicals (Vol. 6, pp. 496–508). Berlin: Springer.

    Google Scholar 

  43. Tomás-Pejó, E., Fermoso, J., Herrador, E., Hernando, H., Jiménez-Sánchez, S., Ballesteros, M., González-Fernández, C., & Serrano, D. P. (2017). Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel., 199, 403–412.

    Google Scholar 

  44. Ford, E. N. J., Mendon, S. K., Thames, S. F., & Rawlins, J. W. (2010). X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular Crosslinkers. Journal of Engineered Fibers and Fabrics., 5, 10–20.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Laboratory of Spectroscopy (ESPEC), Laboratory of Electronic Microscopy and Microanalysis (LMEM), Laboratory of Agricultural Research Support (LAPA) and Laboratory of X-ray Analysis (LARX) of the State University of Londrina for the analyses and CAPES – Brazil for granting a doctoral scholarship to Flávia Debiagi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Debiagi.

Ethics declarations

Conflict of Interest

The authors declare that there are not any conflicts of interest generated from this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debiagi, F., Madeira, T.B., Nixdorf, S.L. et al. Pretreatment Efficiency Using Autoclave High-Pressure Steam and Ultrasonication in Sugar Production from Liquid Hydrolysates and Access to the Residual Solid Fractions of Wheat Bran and Oat Hulls. Appl Biochem Biotechnol 190, 166–181 (2020). https://doi.org/10.1007/s12010-019-03092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03092-0

Keywords

Navigation