Skip to main content
Log in

Comparison of Biological and Chemical Pretreatment on Coproduction of Pectin and Fermentable Sugars from Apple Pomace

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Apple pomace, an abundant accessible source of carbohydrate platform chemicals, is refractory to cellulase degradation because of the main barrier problem of pectin constitute. A rapid and portable method for the coproduction of pectin and fermentable sugars was developed using the pretreatment of acetic acid, followed by enzymatic hydrolysis. Compared with pectinase, acetic acid pretreatment provided the highest pectin yield of 19.1% and the highest enzymatic hydrolysis yield from apple pomace. The acidic pretreated apple pomace cellulose was easily and completely hydrolyzed into fermentable sugars. More than 98.2% conversion of cellulose was achieved in a batch hydrolysis using a cellulase loading of 25 FPU/g cellulose and 10% total solids without any special strategies. A mass balance analysis showed that 95.5 g pectin and 110.2 g fermentable sugars were produced from 500-g oven-dried apple pomace. The integrated process is suggestive of environment-friendly and recyclable methods for the industrial utilization of apple pomace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, X., & Lü, X. (2014). Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Carbohydrate Polymers, 102, 174–184.

    Article  CAS  Google Scholar 

  2. Wikiera, A., Mika, M., Starzyńska-Janiszewska, A., & Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate Polymers, 142, 199–205.

    Article  CAS  Google Scholar 

  3. Parmar, I., & Rupasinghe, H. P. V. (2013). Bio-conversion of apple pomace into ethanol and acetic acid : enzymatic hydrolysis and fermentation. Bioresource Technology, 130, 613–620.

    Article  CAS  Google Scholar 

  4. Vendruscolo, F., Albuquerque, P. M., Streit, F., Esposito, E., & Ninow, J. L. (2008). Apple pomace: a versatile substrate for biotechnological applications. Critical Reviews in Biotechnology, 28(1), 1–12.

    Article  CAS  Google Scholar 

  5. Rafein, M., Hirata, S., & Ali, M. (2015). Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresource Technology, 176, 142–148.

    Article  Google Scholar 

  6. Bonnin, E., Grangé, H., Lesage-meessen, L., Asther, M., & Thibault, J. (2000). Enzymic release of cellobiose from sugar beet pulp , and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydrate Polymers, 41(2), 143–151.

    Article  CAS  Google Scholar 

  7. Liew, S. Q., Chin, N. L., & Yusof, Y. A. (2014). Extraction and characterization of pectin from passion fruit peels. Agriculture and Agricultural Science Procedia, 2, 231–236.

    Article  Google Scholar 

  8. Liu, G., Zhang, Q., Li, H., Qureshi, A. S., Zhang, J., Bao, X., & Bao, J. (2018). Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnology and Bioengineering, 115(1), 60–69.

    Article  CAS  Google Scholar 

  9. Zhang, H., Zhou, X., Xu, Y., & Yu, S. (2017). Production of xylooligosaccharides from waste xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid. Journal of Wood Chemistry and Technology, 37, 1–9.

    Article  Google Scholar 

  10. Luo, J., Xu, Y., & Fan, Y. (2018). Upgrading pectin production from apple pomace by acetic acid extraction. Applied Biochemistry and Biotechnology, 187, 1300–1311.

    Article  Google Scholar 

  11. Fischer, M., & Amadò, R. (1994). Changes in the pectic substances of apples during development and postharvest ripening. Part 1: analysis of the alcohol-insoluble residue. Carbohydrate Polymers, 25(3), 161–166.

    Article  CAS  Google Scholar 

  12. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D.(2012). Determination of Structural Carbohydrates and Lignin in Biomass, Laboratory Analytical Procedure (LAP): Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory (NREL), U.S. Dept. of Energy, Golden, CO.

  13. Chen, L., Zhu, J., Baez, C., Kitin, P., & Elder, T. J. (2016). Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 18(13), 3835–3843.

    Article  CAS  Google Scholar 

  14. Caffall, K. H., & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344(14), 1879–1900.

    Article  CAS  Google Scholar 

  15. Han, Q., Jin, Y., Jameel, H., Chang, H., Phillips, R., & Park, S. (2014). Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Applied Biochemistry and Biotechnology, 175, 1193–1210.

    Article  Google Scholar 

  16. Zykwinska, A. W. (2005). Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiology, 139(1), 397–407.

    Article  CAS  Google Scholar 

  17. Spagnuolo, M., Crecchio, C., Pizzigallo, M. D. R., & Ruggiero, P. (1997). Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresource Technology, 60(3), 215–222.

    Article  CAS  Google Scholar 

  18. Van Dyk, J. S., Gama, R., Morrison, D., Swart, S., & Pletschke, B. I. (2013). Food processing waste: problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renewable and Sustainable Energy Reviews, 26, 521–531.

    Article  Google Scholar 

  19. Zhang, H., Xu, Y., & Yu, S. (2017). Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresource Technology, 234, 343–349.

    Article  CAS  Google Scholar 

  20. Yapo, B. M. (2009). Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Research International, 42(8), 1197–1202.

    Article  CAS  Google Scholar 

  21. Kumar, L., Arantes, V., Chandra, R., & Saddler, J. (2012). The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresource Technology, 103(1), 201–208.

    Article  CAS  Google Scholar 

  22. Beukes, N., & Pletschke, B. I. (2011). Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresource Technology, 102(8), 5207–5213.

    Article  CAS  Google Scholar 

  23. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    Article  CAS  Google Scholar 

  24. Hodge, D. B., Karim, M. N., Schell, D. J., & Mcmillan, J. D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 99(18), 8940–8948.

    Article  CAS  Google Scholar 

  25. Ismail, N. S. M., Ramli, N., Hani, N. M., & Meon, Z. (2012). Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana, 41, 41–45.

    CAS  Google Scholar 

  26. Olver, B., Van Dyk, J. S., Beukes, N., & Pletschke, B. I. (2011). Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates. Biotechnology, 4, 187–192.

    Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (31370573). Also, the authors gratefully acknowledge financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Xu, Y. Comparison of Biological and Chemical Pretreatment on Coproduction of Pectin and Fermentable Sugars from Apple Pomace. Appl Biochem Biotechnol 190, 129–137 (2020). https://doi.org/10.1007/s12010-019-03088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03088-w

Keywords

Navigation