Skip to main content
Log in

Purification and Characterization of Cellulase from Obligate Halophilic Aspergillus flavus (TISTR 3637) and Its Prospects for Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A cellulase from the extreme obligate halophilic fungus, Aspergillus flavus, isolated from a man-made solar saltern in Phetchaburi, Thailand, was purified by ammonium sulfate precipitation and using Sephadex G-100 gel filtration column chromatography. The cellulase was found to be approximately 55 kDa by SDS-PAGE. Using CMC as a substrate, the specific activity of the cellulase was 62.9 units (U) mg−1 with Vmax and Km values of 37.87 mol min−1 mg−1 and 3.02 mg mL−1, respectively. Characterization of the enzyme revealed it to be an extremozyme, having an optimum activity at pH 10, 60 °C, and 200 g L−1 of NaCl. The enzyme activity was not significantly altered by the addition of divalent metal cations at 2 mM and neither did ß-mercaptoethanol, while EDTA was found strongly inhibiting the cellulase. Compared with commercial cellulase, the purified cellulase from A. flavus was more active in the extremity of conditions, especially at pH 10, 60 °C, and 150 g L−1 NaCl, whereas the commercial cellulase had a very low activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Criquet, S. (2002). Measurement and characterization of cellulase activity in sclerophyllous forest litter. Journal of Microbiolgical Methods, 50(2), 165–173.

    Article  CAS  Google Scholar 

  2. Ilmen, M., Saloheimo, A., Onnela, M. L., & Penttilä, M. E. (1997). Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied Environmental Microbiology, 63(4), 1298–1306.

    CAS  PubMed  Google Scholar 

  3. Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  4. Bhat, M. (2005). Cellulases and related enzymes in biotechnology. Biotechnological Advances, 18(5), 355–383.

    Article  Google Scholar 

  5. Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: a review. Brazilian Journal of Microbiology, 43(3), 844–856.

    Article  CAS  Google Scholar 

  6. Ali, I., Kanhayuwa, L., Rachdawong, S., & Rakshit, S. K. (2013). Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Annals of Microbiology, 63(3), 887–895.

    Article  Google Scholar 

  7. Ali, F. S., Akbar, A., Prasongsuk, S., Permpornsakul, P., Yanwisetpakdee, B., Lotrakul, P., Punnapayak, H., Asrar, M., & Ali, I. (2018). Penicillium imranianum, a new species from the man-made solar saltern of Phetchaburi province, Thailand. Pakistan Journal of Botany, 50(5), 2055–2058.

    CAS  Google Scholar 

  8. Ali, I. (2014). Seven big challenges for Pakistan-and the lessons they could teach. The Futurist, 48(5), 22–26.

    Google Scholar 

  9. Ali, I., Siwarungson, N., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Bankeeree, W., & Rakshit, S. K. (2014). Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pakistan Journal of Botany, 46, 983–988.

    Google Scholar 

  10. Ali, I., Prasongsuk, S., Akbar, A., Aslam, M., Lotrakul, P., Punnapayak, H., & Rakshit, S. K. (2016). Hypersaline habitats and halophilic microorganisms. Maejo International Journal of Science and Technology, 10, 330–345.

    CAS  Google Scholar 

  11. Ali, I., Akbar, A., Aslam, M., Ullah, S., Anwar, M., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Yanwisetpakdee, B., & Permpornsakul, P. (2016). Comparative study of physical factors and microbial diversity of four man-made extreme ecosystems. Proceeding of National Academy of Sciences India B, 86(3), 767–778.

    Article  Google Scholar 

  12. Ariffin, H., Abdullah, N., Umi Kalsom, M., Shirai, Y., & Hassan, M. (2006). Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering & Technology, 3(1), 47–53.

    Google Scholar 

  13. Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., Lee, K. M., Kim, S. J., & Lee, J. K. (2010). Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484.

    Article  CAS  Google Scholar 

  14. Li, X., Wang, H. L., Li, T., & Yu, H. Y. (2012). Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnology Letters, 34(8), 1531–1536.

    Article  CAS  Google Scholar 

  15. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anals of Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  16. Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  17. Lowry, O. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  PubMed  Google Scholar 

  18. Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.

    Article  CAS  Google Scholar 

  19. Pečiulytė, D. (2007). Isolation of cellulolytic fungi from waste paper gradual recycling materials. Ekologija, 53(4), 11–18.

    Google Scholar 

  20. Sivaramanan, S. (2014). Culturing cellulolytic fungi in sea water. International Journal of Science Research Publication, 4, 1–6.

    Google Scholar 

  21. Gunny, A. A. N., Arbain, D., Jamal, P., & Gumba, R. E. (2015). Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi Journal of Biological Sciences, 22(4), 476–483.

    Article  CAS  Google Scholar 

  22. Zhang, G., Li, S., Xue, Y., Mao, L., & Ma, Y. (2012). Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 16(1), 35–43.

    Article  CAS  Google Scholar 

  23. Wang, G., Zhang, X., Wang, L., Wang, K., Peng, F., & Wang, L. (2012). The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals. Advances in Biology and Chemistry, 2(4), 390–395.

    Article  CAS  Google Scholar 

  24. Ali, I., Akbar, A., Anwar, M., Prasongsuk, S., Lotrakul, P., & Punnapayak, H. (2015). Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. Biomed Research International. https://doi.org/10.1155/2015/245649.

    CAS  Google Scholar 

  25. Ladeira, S. A., Cruz, E., Delatorre, A. B., Barbosa, J. B., & Leal Martins, M. L. (2015). Cellulase production by thermophilic Bacillus sp: SMIA-2 and its detergent compatibility. Electronic Journal of Biotechnology, 18(2), 110–115.

    Article  CAS  Google Scholar 

  26. Ali, I., Akbar, A., Anwar, M., Yanwisetpakdee, B., Prasongsuk, S., Lotrakul, P., & Punnapayak, H. (2014). Purification and characterization of extracellular, polyextremophilic α-amylase obtained from halophilic Engyodontium album. Iranian Journal of Biotechnology, 12(4), 35–40.

    Article  Google Scholar 

  27. Shikata, S., Saeki, K., Okoshi, H., Yoshimatsu, T., Ozaki, K., Kawai, S., & Ito, S. (1990). Alkaline cellulases for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes. Agriculture Biology and Chemistry, 54(1), 91–96.

    CAS  Google Scholar 

  28. Ali, I., Akbar, A., Yanwisetpakdee, B., Prasongsuk, S., Lotrakul, P., & Punnapayak, H. (2014). Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. Biomed Research International. https://doi.org/10.1155/2014/106937.

    Article  Google Scholar 

  29. Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ullah, S., Sajid, S., & Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222.

    Article  CAS  Google Scholar 

  30. Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3. Biotech, 5(5), 597–609.

    Google Scholar 

Download references

Funding

This research was funded by the Ratchadapisek Sompoch Endowment Fund (2016), Chulalongkorn University (CU59-049-EN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sehanat Prasongsuk or Imran Ali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, A., Chen, X., Prasongsuk, S. et al. Purification and Characterization of Cellulase from Obligate Halophilic Aspergillus flavus (TISTR 3637) and Its Prospects for Bioethanol Production. Appl Biochem Biotechnol 189, 1327–1337 (2019). https://doi.org/10.1007/s12010-019-03086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03086-y

Keywords

Navigation