Skip to main content
Log in

Optimization of Alginate-Whey Protein Isolate Microcapsules for Survivability and Release Behavior of Probiotic Bacteria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to improve the survivability of L. acidophilus encapsulated in alginate-whey protein isolate (AL-WPI) biocomposite under simulated gastric juice (SGJ) and simulated intestinal juice (SIJ). Microcapsules were prepared based on emulsification/internal gelation technique. Optimal compositions of AL and WPI and their ratio in the aqueous phase were evaluated based on minimizing mean diameter (MD) of the microcapsules and maximizing encapsulation efficiency (EE), survivability of cells under SGJ (Viability), and release of viable cells under SIJ (Release) using Box-Behnken experimental design. Optimal composition comprising 4.54% (w/v) AL, 10% (w/v) WPI, and 10% (v/v) AL-WPI gum in the aqueous phase was determined statistically. Physicochemical characteristics of the optimized matrix were investigated by SEM, FTIR, and XRD analysis to determine surface morphology, molecular bonds, and crystalline nature of such hydrocolloid. It could be concluded that the proposed biocomposite is a good promise for nutrients encapsulation in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., … Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  2. Chen, M., & Mustapha, A. (2012). Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Food Microbiology, 30(1), 68–73.

    Article  PubMed  Google Scholar 

  3. Boza, Y., Barbin, D., & Scamparini, A. R. P. (2003). Activity and survival of spray-dried Beijerinckia sp. microencapsulated in different carbohydrates. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 111(2), 113–128.

    Article  CAS  Google Scholar 

  4. Lawuyi, B., Chen, H., Afkhami, F., Kulamarva, A., & Prakash, S. (2007). Microencapsulated engineered Lactococcus lactis cells for heterologous protein delivery: preparation and in vitro analysis. Applied Biochemistry and Biotechnology, 142(1), 71–80.

    Article  CAS  PubMed  Google Scholar 

  5. Fioramonti, S. A., Stepanic, E. M., Tibaldo, A. M., Pavón, Y. L., & Santiago, L. G. (2018). Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Research International, 119, 931–940.

    Article  PubMed  Google Scholar 

  6. Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cell: from laboratory scale to industrial application. Journal of Food Engineering, 104(4), 467–483.

    Article  CAS  Google Scholar 

  7. Vossoughi, A., & Matthew, H. W. T. (2018). Encapsulation of mesenchymal stem cells in glycosaminoglycans-chitosan polyelectrolyte microcapsules using electrospraying technique: investigating capsule morphology and cell viability. Bioengineering & Translational Medicine, 3(3), 265–274.

    Article  CAS  Google Scholar 

  8. Vaziri, A. S., Alemzadeh, I., & Vossoughi, M. (2018). Improving survivability of Lactobacillus plantarum in alginate-chitosan beads reinforced by Na-tripolyphosphate dual cross-linking. LWT - Food Science and Technology, 97(July), 440–447.

    Article  CAS  Google Scholar 

  9. Islan, G. A., De Verti, I. P., Marchetti, S. G., & Castro, G. R. (2012). Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility. Applied Biochemistry and Biotechnology, 167(5), 1408–1420.

    Article  CAS  PubMed  Google Scholar 

  10. Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. (2012). Effect of whey protein - alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4(4), 891–898.

    Article  CAS  Google Scholar 

  11. Guzey, D., & McClements, D. J. (2006). Characterization of b-lactoglobulin-chitosan interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(1), 124–131.

    Article  CAS  Google Scholar 

  12. Leon, A. M., Medina, W. T., Park, D. J., & Aguilera, J. M. (2016). Mechanical properties of whey protein/Na alginate gel microparticles. Journal of Food Engineering, 188, 1–7.

    Article  CAS  Google Scholar 

  13. Chen, L., & Subirade, M. (2006). Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials, 27(26), 4646–4654.

    Article  CAS  PubMed  Google Scholar 

  14. Sheu, T. Y., & Marshall, R. T. (1993). Microentrapment of Lactobacilli in calcium alginate gels. Journal of Food Science, 58(3), 557–561.

    Article  Google Scholar 

  15. Vaziri, A. S., Alemzadeh, I., Vossoughi, M., & Khorasani, A. C. (2018). Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydrate Polymers, 199(Nov), 266–275.

    Article  CAS  PubMed  Google Scholar 

  16. Khorasani, A. C., & Shojaosadati, S. A. (2017). Pectin-non-starch nanofibers biocomposites as novel gastrointestinal-resistant prebiotics. International Journal of Biological Macromolecules, 94(Jan), 131–144.

    Article  CAS  PubMed  Google Scholar 

  17. Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science and Technology, 15(7-8), 330–347.

    Article  CAS  Google Scholar 

  18. Karakas, C. Y., Duman, D., & Yilmaz, M. T. (2018). Encapsulation of probiotic living cells in alginate-PVA based electrospun nanofibers: evaluation of viability and survival in simulated gastrointestinal conditions. Journal of Biotechnology, 280(Aug), S26.

    Article  Google Scholar 

  19. Abbasi, F., Samadi, F., Jafari, S. M., Ramezanpour, S., & Shams Shargh, M. (2019). Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrasonics Sonochemistry, 50(Jan), 208–217.

    Article  CAS  PubMed  Google Scholar 

  20. Chandramoulia, V., Kailasapathy, K., Peirisb, P., & Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods, 56(1), 27–35.

    Article  Google Scholar 

  21. Tiani, K. A., Yeung, T. W., McClements, D. J., & Sela, D. A. (2018). Extending viability of Lactobacillus plantarum and Lactobacillus johnsonii by microencapsulation in alginate microgels. International Journal of Food Sciences and Nutrition, 69(2), 155–164.

    Article  CAS  PubMed  Google Scholar 

  22. Park, S. A., Ahn, J. B., Choi, S. H., Lee, J. S., & Lee, H. G. (2014). The effects of particle size on the physicochemical properties of optimized astaxanthin-rich Xanthophyllomyces dendrorhous-loaded microparticles. LWT - Food Science and Technology, 55(2), 638–644.

    Article  CAS  Google Scholar 

  23. Ng, S. K., Nyam, K. L., Lai, O. M., Nehdi, I. A., Chong, G. H., & Tan, C. P. (2017). Development of a palm olein oil-in-water (o/w) emulsion stabilized by a whey protein isolate nanofibrils-alginate complex. LWT - Food Science and Technology, 82(Sep), 311–317.

    Article  CAS  Google Scholar 

  24. Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology, 18(5), 240–251.

    Article  CAS  Google Scholar 

  25. Feilizadeh, M., Alemzadeh, I., Delparish, A., Estahbanati, M. R. K., Soleimani, M., Jangjou, Y., & Vosoughi, A. (2015). Optimization of operating parameters for efficient photocatalytic inactivation of Escherichia coli based on a statistical design of experiments. Water Science and Technology, 71(6), 823–831.

    Article  CAS  PubMed  Google Scholar 

  26. Adhikari, K., Mustapha, A., & Grün, I. U. (2003). Survival and metabolic activity of microencapsulated Bifidobacterium longum in stirred yogurt. Journal of Food Science, 68(1), 275–280.

    Article  CAS  Google Scholar 

  27. Sousa, S., Gomes, A. M., Pintado, M. M., Silva, J. P., Costa, P., Amaral, M. H., Duarte, A. C., Rodrigues, D., Rocha-Santos, T. A. P., & Freitas, A. C. (2015). Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food and Bioproducts Processing, 93(November), 90–97. https://doi.org/10.1016/j.fbp.2013.11.007.

    Article  CAS  Google Scholar 

  28. Yeung, T. W., Üçok, E. F., Tiani, K. A., McClements, D. J., & Sela, D. A. (2016). Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Frontiers in Microbiology, 7(APR), 1–11. https://doi.org/10.3389/fmicb.2016.00494.

    Article  Google Scholar 

  29. Khorasani, A. C., & Shojaosadati, S. A. (2017). Starch- and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices. Food Hydrocolloids, 63(Feb), 273–285.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Lin, J., & Zhong, Q. (2015). The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Research International, 71(May), 9–15.

    Article  CAS  Google Scholar 

  31. Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6(1), 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, Y., Zheng, Z., Zhang, T., Hendricks, G., & Guo, M. (2016). Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material. International Journal of Food Sciences and Nutrition, 67(6), 670–677.

    Article  CAS  PubMed  Google Scholar 

  33. Mohammadi, N., Ehsani, M. R., & Bakhoda, H. (2018). Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. Flavour and Fragrance Journal, 33(5), 357–366.

    Article  CAS  Google Scholar 

  34. Khan, A., Wang, C., Sun, X., Killpartrick, A., & Guo, M. (2019). Physicochemical and microstructural properties of polymerized whey protein encapsulated 3,3 0-diindolylmethane nanoparticles. Molecules, 24(4), 702.

    Article  CAS  PubMed Central  Google Scholar 

  35. Bergo, P., & Sobral, P. J. A. (2007). Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids, 21(8), 1285–1289.

    Article  CAS  Google Scholar 

  36. Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the experimental support by Biochemical and Bioenvironmental Engineering Research Center (BBRC) and the Chemical and Petroleum Engineering Department at Sharif University of Technology. Also, this research has been supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iran Alemzadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehkordi, S.S., Alemzadeh, I., Vaziri, A.S. et al. Optimization of Alginate-Whey Protein Isolate Microcapsules for Survivability and Release Behavior of Probiotic Bacteria. Appl Biochem Biotechnol 190, 182–196 (2020). https://doi.org/10.1007/s12010-019-03071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03071-5

Keywords

Navigation