Skip to main content

Advertisement

Log in

An Efficient Approach for Two Distal Point Site-Directed Mutagenesis from Randomly Ligated PCR Products

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Site-directed mutagenesis is one of the most important tools in molecular biology. The majority of the mutagenesis methods have been developed to mutate one region of target DNA in each cycle of mutagenesis, while in some cases there is a need to mutate several distal points. We used a new method to simultaneously mutate two distal points in the target DNA. Different regions of the target DNA were amplified in three separate PCR reactions. The PCR products were back-to-back and together they made the complete length of the template DNA. Mutations were introduced to PCR products by middle mutagenic primers. PCR products were mixed and ligated with random blunt ligation, and then the desired mutated DNA fragments were selected in two steps by flanking restriction enzyme digestion and size selection. Selected fragments were amplified in another PCR reaction using flanking primers and finally cloned into the plasmid vector. This mutagenesis process is simple, there is no need to use modified primers and long or difficult PCR reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boldrin, F., Degiacomi, G., Serafini, A., Kolly, G. S., Ventura, M., Sala, C., Provvedi, R., Palu, G., Cole, S. T., & Manganelli, R. (2018). Promoter mutagenesis for fine-tuning expression of essential genes in mycobacterium tuberculosis. Microbial Biotechnology, 11(1), 238–247.

    Article  CAS  Google Scholar 

  2. Pirlot, C., Thiry, M., Trussart, C., Di Valentin, E., Piette, J., & Habraken, Y. (2016). Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress. Biochimica et Biophysica Acta, 1863(4), 581–595.

    Article  CAS  Google Scholar 

  3. Hsieh, P. C., & Vaisvila, R. (2013). Protein engineering: single or multiple site-directed mutagenesis. Methods in Molecular Biology, 978, 173–186.

    Article  CAS  Google Scholar 

  4. Sen, S., Venkata Dasu, V., & Mandal, B. (2007). Developments in directed evolution for improving enzyme functions. Applied Biochemistry and Biotechnology, 143(3), 212–223.

    Article  CAS  Google Scholar 

  5. Foster, P. L. (1991). In vivo mutagenesis. Methods in Enzymology, 204, 114–125.

    Article  CAS  Google Scholar 

  6. Bose, J. L. (2016). Chemical and UV mutagenesis. Methods in Molecular Biology, 1373, 111–115.

    Article  CAS  Google Scholar 

  7. Tan, J., Chu, J., Hao, Y., Guo, Y., Zhuang, Y., & Zhang, S. (2013). High-throughput system for screening of cephalosporin C high-yield strain by 48-deep-well microtiter plates. Applied Biochemistry and Biotechnology, 169(5), 1683–1695.

    Article  CAS  Google Scholar 

  8. Hoshijima, K., Jurynec, M. J., & Grunwald, D. J. (2016). Precise genome editing by homologous recombination. Methods in Cell Biology, 135, 121–147.

    Article  CAS  Google Scholar 

  9. Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., & Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in chardonnay (Vitis vinifera L.). Scientific Reports, 6(1), 32289.

    Article  CAS  Google Scholar 

  10. Zhang, J., Zhu, Z., Yue, W., Li, J., Chen, Q., Yan, Y., Lei, A., & Hua, J. (2019). Establishment of CRISPR/Cas9-mediated knock-in system for porcine cells with high efficiency. Applied Biochemistry and Biotechnology.

  11. Botstein, D., & Shortle, D. (1985). Strategies and applications of in vitro mutagenesis. Science, 229(4719), 1193–1201.

    Article  CAS  Google Scholar 

  12. Ling, M. M., & Robinson, B. H. (1997). Approaches to DNA mutagenesis: an overview. Analytical Biochemistry, 254(2), 157–178.

    Article  CAS  Google Scholar 

  13. Reikofski, J., & Tao, B. Y. (1992). Polymerase chain reaction (PCR) techniques for site-directed mutagenesis. Biotechnology Advances, 10(4), 535–547.

    Article  CAS  Google Scholar 

  14. Smith, M. (1985). In vitro mutagenesis. Annual Review of Genetics, 19(1), 423–462.

    Article  CAS  Google Scholar 

  15. Karimi, E., Karkhane, A. A., Yakhchali, B., Shamsara, M., Aminzadeh, S., Torktaz, I., Hosseini, M., & Safari, Z. (2014). Study of the effect of F17A mutation on characteristics of Bacillus thermocatenulatus lipase expressed in Pichia pastoris using in silico and experimental methods. Biotechnology and Applied Biochemistry, 61(3), 264–273.

    CAS  PubMed  Google Scholar 

  16. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51–59.

    Article  CAS  Google Scholar 

  17. Hemsley, A., Arnheim, N., Toney, M. D., Cortopassi, G., & Galas, D. J. (1989). A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Research, 17(16), 6545–6551.

    Article  CAS  Google Scholar 

  18. Qi, D., & Scholthof, K. B. (2008). A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. Journal of Virological Methods, 149(1), 85–90.

    Article  CAS  Google Scholar 

  19. Sanchis, J., Fernandez, L., Carballeira, J. D., Drone, J., Gumulya, Y., Hobenreich, H., Kahakeaw, D., Kille, S., Lohmer, R., Peyralans, J. J., Podtetenieff, J., Prasad, S., Soni, P., Taglieber, A., Wu, S., Zilly, F. E., & Reetz, M. T. (2008). Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates. Applied Microbiology and Biotechnology, 81(2), 387–397.

    Article  CAS  Google Scholar 

  20. Yu, G., Jia, X., Wen, J., Lu, W., Wang, G., Caiyin, Q., & Chen, Y. (2011). Strain improvement of Streptomyces roseosporus for daptomycin production by rational screening of He-Ne laser and NTG induced mutants and kinetic modeling. Applied Biochemistry and Biotechnology, 163(6), 729–743.

    Article  CAS  Google Scholar 

  21. Zhang, W., & Mannervik, B. (2013). An improved dual-tube megaprimer approach for multi-site saturation mutagenesis. World Journal of Microbiology and Biotechnology, 29(4), 667–672.

    Article  CAS  Google Scholar 

  22. Luo, W.-G., Liu, H.-Z., & Lin, W.-H. (2013). Simultaneous splicing of multiple DNA fragments in one PCR reaction. Biol. proced. online, 15(1), 9.

    Article  Google Scholar 

  23. Tseng, W. C., Lin, J. W., Hung, X. G., & Fang, T. Y. (2010). Simultaneous mutations up to six distal sites using a phosphorylation-free and ligase-free polymerase chain reaction-based mutagenesis. Analytical Biochemistry, 401(2), 315–317.

    Article  CAS  Google Scholar 

  24. Fushan, A. A., & Drayna, D. T. (2009). MALS: an efficient strategy for multiple site-directed mutagenesis employing a combination of DNA amplification, ligation and suppression PCR. BMC Biotechnology, 9(1), 83.

    Article  Google Scholar 

  25. Ali, S. A., & Steinkasserer, A. (1995). PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. BioTechniques, 18, 746–749.

    CAS  PubMed  Google Scholar 

  26. Adereth, Y., Champion, K. J., Hsu, T., & Dammai, V. (2005). Site-directed mutagenesis using Pfu DNA polymerase and T4 DNA ligase. BioTechniques, 38(6), 864–868.

    Article  CAS  Google Scholar 

  27. Wurch, T., Lestienne, F., & Pauwels, P. J. (1998). A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. Biotechnology Techniques, 12(9), 653–657.

    Article  CAS  Google Scholar 

  28. Peng, R.-H., Xiong, A.-S., & Yao, Q.-H. (2006). A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Applied Microbiology and Biotechnology, 73(1), 234–240.

    Article  CAS  Google Scholar 

  29. Mergulhão, F., Kelly, A., Monteiro, G., Taipa, M., & Cabral, J. (1999). Troubleshooting in gene splicing by overlap extension. Molecular Biotechnology, 12(3), 285–287.

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Institute for Genetic Engineering and Biotechnology and the University of Sistan and Baluchestan.

Author information

Authors and Affiliations

Authors

Contributions

B. Yakhchali, A. A. Karkhane, and M. H. Sangtarash conceived and designed the research. J. Khezri performed experiments. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Hossein Sangtarash.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezri, J., Yakhchali, B., Karkhane, A.A. et al. An Efficient Approach for Two Distal Point Site-Directed Mutagenesis from Randomly Ligated PCR Products. Appl Biochem Biotechnol 189, 1318–1326 (2019). https://doi.org/10.1007/s12010-019-03059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03059-1

Keywords

Navigation