Skip to main content
Log in

Improving Soluble Expression of Tyrosine Decarboxylase from Lactobacillus brevis for Tyramine Synthesis with High Total Turnover Number

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The soluble expression of tyrosine decarboxylase (TDC) in heterologous host is often challenging. Here, acidic condition was found to be favorable for improving the soluble expression of TDC from Lactobacillus brevis in Escherichia coli, while addition of carbohydrates (such as glucose, arabinose, and fructose) was vital for decreasing the insoluble fraction. By simple pH control and addition of glucose, the specific activity of TDC in crude extract was enhanced to 46.3 U mg−1, 3.67-fold of that produced from LB medium. Optimization of the reaction conditions revealed that Tween-80 was effective in improving the tyramine production catalyzed by TDC, especially at high tyrosine loadings. As much as 400 mM tyrosine could be completely converted into tyramine with a substrate to catalyst ratio of 29.0 g g−1 and total turnover number of 23,300. This study provides efficient strategies for the highly soluble expression of TDC and biocatalytic production of tyramine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nishimaki-Mogami, T., Suzuki, K., Okochi, E., & Takahashi, A. (1996). Bezafibrate and clofibric acid are novel inhibitors of phosphatidylcholine synthesis via the methylation of phosphatidylethanolamine. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1304(1), 11–20. https://doi.org/10.1016/S0005-2760(96)00101-4.

    Article  CAS  Google Scholar 

  2. Forman, B. M., Chen, J., & Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proceedings of the National Academy of Sciences, 94(9), 4312–4317.

    Article  CAS  Google Scholar 

  3. Zhu, Z. T., Munhall, A. C., & Johnson, S. W. (2007). Tyramine excites rat subthalamic neurons in vitro by a dopamine-dependent mechanism. Neuropharmacology, 52(4), 1169–1178. https://doi.org/10.1016/j.neuropharm.2006.12.005.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, K., Kang, K., Park, M., Park, S., & Back, K. (2009). Enhanced octopamine synthesis through the ectopic expression of tyrosine decarboxylase in rice plants. Plant Science, 176(1), 46–50. https://doi.org/10.1016/j.plantsci.2008.09.006.

    Article  CAS  Google Scholar 

  5. Roeder, T., Seifert, M., Kahler, C., & Gewecke, M. (2003). Tyramine and octopamine: Antagonistic modulators of behavior and metabolism. Archives of Insect Biochemistry and Physiology, 54(1), 1–13. https://doi.org/10.1002/arch.10102.

    Article  PubMed  Google Scholar 

  6. Molaei, G., Paluzzi, J. P., Bendena, W. G., & Lange, A. B. (2005). Isolation, cloning, and tissue expression of a putative octopamine/tyramine receptor from locust visceral muscle tissues. Archives of Insect Biochemistry and Physiology, 59(3), 132–149. https://doi.org/10.1002/arch.20067.

    Article  CAS  PubMed  Google Scholar 

  7. Stohs, S. J. (2011). Synephrine: From trace concentrations to massive consumption in weight-loss. Food and Chemical Toxicology, 49(1), 1472–1473. https://doi.org/10.1016/j.fct.2011.03.035.

    Article  CAS  PubMed  Google Scholar 

  8. Mao, G. X., Deng, H. B., Yuan, L. G., Li, D. D., Li, Y. Y., & Wang, Z. (2010). Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomedical and Environmental Sciences, 23(2), 161–166. https://doi.org/10.1016/S0895-3988(10)60047-5.

    Article  CAS  PubMed  Google Scholar 

  9. Ouyang, J. F., Lou, J., Yan, C., Ren, Z. H., & Qiao, H. X. (2010). In-vitro promoted differentiation of mesenchymal stem cells towards hepatocytes induced by salidroside. Journal of Pharmacy and Pharmacology, 62(4), 530–538. https://doi.org/10.1211/jpp.62.04.0017.

    Article  CAS  PubMed  Google Scholar 

  10. Li, Y., Yang, F., Xu, X., Pan, S., Wang, L., & Xia, C. Q. (2009). Improved preparation of tyramine by curtius rearrangement. Chinese Journal of Chemistry, 27(2), 433–436. https://doi.org/10.1002/cjoc.200990072.

    Article  Google Scholar 

  11. Kirk, K. L. (1976). Photochemistry of diazonium salts. 4. Synthesis of ring-fluorinated tyramines and dopamines. Journal of Organic Chemistry, 41(14), 2373–2376. https://doi.org/10.1021/jo00876a004.

    Article  CAS  PubMed  Google Scholar 

  12. Buck, J. S. (1933). Reduction of hydroxy mandelonitrile. A new synthesis of tyramine. Journal of American Chemical Society, 55(8), 3388–3390. https://doi.org/10.1021/ja01335a058.

    Article  CAS  Google Scholar 

  13. Wang, Y., & Xie, D. (1994). An improved synthetic method of tyramine. Chinese Journal of Medical Chemistry, 4, 128–129.

    CAS  Google Scholar 

  14. Shimizu, Y., Morimoto, H., Zhang, M., & Ohshima, T. (2012). Microwave-assisted deacylation of unactivated amides using ammonium-salt-accelerated transamidation. Angewandte Chemie International Edition, 51(34), 8564–8567. https://doi.org/10.1002/anie.201202354.

    Article  CAS  PubMed  Google Scholar 

  15. Sandmeier, E., Hale, T. I., & Christen, P. (1994). Multiple evolutionary origin of pyridoxal-5-phosphate-dependent amino acid decarboxylases. European Journal of Biochemistry, 221(3), 997–1002. https://doi.org/10.1111/j.1432-1033.1994.tb18816.x.

    Article  CAS  PubMed  Google Scholar 

  16. Facchini, P. J., & De Luca, V. (1995). Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry, 38(5), 1119–1126. https://doi.org/10.1016/0031-9422(94)00814-A.

    Article  CAS  PubMed  Google Scholar 

  17. El-Ahmady, S. H., & Nessler, C. L. (2001). Cellular localization of tyrosine decarboxylase expression in transgenic opium poppy and tobacco. Plant Cell Reports, 20(4), 313–317. https://doi.org/10.1007/s002990100331.

    Article  CAS  Google Scholar 

  18. Ma, L. Q., Gao, D. Y., Wang, Y. N., Wang, H. H., Zhang, J. X., Pang, X. B., Hu, T. S., Lu, S. Y., Li, G. F., Ye, H. C., Li, Y. F., & Wang, H. (2008). Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis. Plant Biology, 10(3), 323–333. https://doi.org/10.1111/j.1438-8677.2007.00024.x.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, J. X., Ma, L. Q., Yu, H. S., Zhang, H., Wang, H. T., Qin, Y. F., Shi, G. L., & Wang, Y. N. (2011). A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis. Plant Cell Reports, 30(8), 1443–1453. https://doi.org/10.1007/s00299-011-1053-7.

    Article  CAS  PubMed  Google Scholar 

  20. Ishida, Y., & Ozaki, M. (2012). Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina. Naturwissenschaften, 99(1), 71–75. https://doi.org/10.1007/s00114-011-0865-1.

    Article  CAS  PubMed  Google Scholar 

  21. Kezmarsky, N. D., Xu, H., Graham, D. E., & White, R. H. (2005). Identification and characterization of a L-tyrosine decarboxylase in Methanocaldococcus jannaschii. Biochimica et Biophysica Acta, 1722(2), 175–182. https://doi.org/10.1016/j.bbagen.2004.12.003.

    Article  CAS  PubMed  Google Scholar 

  22. Borresen, T., Klausen, N. K., Larsen, L. M., & Sørensen, H. (1989). Purification and characterisation of tyrosine decarboxylase and aromatic-L-amino-acid decarboxylase. Biochimica et Biophysica Acta, 993(1), 108–115. https://doi.org/10.1016/0304-4165(89)90149-9.

    Article  CAS  PubMed  Google Scholar 

  23. Lucas, P., & Lonvaud-Funel, A. (2002). Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211(1), 85–89. https://doi.org/10.1111/j.1574-6968.2002.tb11207.x.

    Article  CAS  PubMed  Google Scholar 

  24. Moreno-Arribas, V., & Lonvaud-Funel, A. (2001). Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiology Letters, 195(1), 103–107. https://doi.org/10.1111/j.1574-6968.2001.tb10505.x.

    Article  CAS  PubMed  Google Scholar 

  25. Darbinyan, V., Aslanyan, G., Amroyan, E., Gabrielyan, E., Malmström, C., & Panossian, A. (2007). Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nordic Journal of Psychiatry, 61(5), 343–348. https://doi.org/10.1080/08039480701643290.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, K., & Ni, Y. (2014). Tyrosine decarboxylase from Lactobacillus brevis: Soluble expression and characterization. Protein Expression and Purification, 94, 33–39. https://doi.org/10.1016/j.pep.2013.10.018.

    Article  CAS  PubMed  Google Scholar 

  27. Nomura, M., Kobayashi, M., & Ohmomo, S. (2000). Inactivation of the glutamate decarboxylase gene Lactococcus lactis subsp. cremoris. Applied Environmental Microbiology, 66(5), 2235–2237. https://doi.org/10.1128/AEM.66.5.2235-2237.2000.

    Article  CAS  PubMed  Google Scholar 

  28. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22(11), 1399–1408. https://doi.org/10.1038/nbt1029.

    Article  CAS  PubMed  Google Scholar 

  29. de Marco, A., Deuerling, E., Mogk, A., Tomoyasu, T., & Bukau, B. (2007). Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnology, 7(1), 32–40. https://doi.org/10.1186/1472-6750-7-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, H. J., Wei, Y., Lu, Y., Wu, S. P., Liu, Q., Liu, J. Z., & Jiao, Q. C. (2016). Three-step biocatalytic reaction using whole cells for efficient production of tyramine from keratin acid hydrolysis wastewater. Applied Microbiology and Biotechnology, 100(4), 1691–1700. https://doi.org/10.1007/s00253-015-7054-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (21506073, 21776112), the Natural Science Foundation of Jiangsu Province (BK20150003, BK20171135), six talent peaks project of Jiangsu Province (2015-SWYY-008), national first-class discipline program of Light Industry Technology and Engineering (LITE2018-07), the Program of Introducing Talents of Discipline to Universities (111-2-06), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 11450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Xu, G., Ni, J. et al. Improving Soluble Expression of Tyrosine Decarboxylase from Lactobacillus brevis for Tyramine Synthesis with High Total Turnover Number. Appl Biochem Biotechnol 188, 436–449 (2019). https://doi.org/10.1007/s12010-018-2925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2925-x

Keywords

Navigation