Skip to main content

Advertisement

Log in

Molecular and Biological Characterization of a Prepared Recombinant Human Interferon Alpha 2b Isoform

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant human interferon alpha2b (rhIFN-α2b) protein is FDA approved for treatment of many tumors and viral diseases. A rhIFN-α2b isoform has been produced and purified from the refolding reaction using high-resolution anion ion exchange chromatography. This isoform has a proper MW (19 kDa) and high purity and homogeneity. The conservation of native linear and conformational epitopes in this isoform was immunologically confirmed by Western blot and ELISA. Mass spectrometry assessment of its intact mass showed average mass (19,337 Da) equivalent to that of the expressed rhIFN-α2b protein without any chemical modification and without the first methionine. Peptide mapping of rhIFN-α2b through tryptic digestion of reductive/alkylated protein using urea as a denaturing agent gave the best pattern. The rhIFN-α2b had a high specific antiviral activity (2.5 × 108 ± 1.1 × 108IU/mg protein). In vivo clearance study of rhIFN-α2b in female SD rats (500 μg/kg, intramuscularly) revealed rapid clearance (elimination half-life 0.54 h with a maximum plasma concentration of 33,792 pg/ml) compared with the commercial rhIFN-α2 (elimination half-life 0.75–0.96 h). In conclusion, the prepared rhIFN-α2b isoform has high purity, homogeneity, native like chemical and structural composition, high antiviral activity, and proper biological stability, which reduce its immunogenicity and raise its therapeutic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abergel, A., Asselah, T., Metivier, S., Kersey, K., Jiang, D., Mo, H., Pang, P. S., Samuel, D., & Loustaud-Ratti, V. (2016). Ledipasvir-sofosbuvir in patients with hepatitis C virus genotype 5 infection: an open-label, multicentre, single-arm, phase 2 study. The Lancet Infectious Diseases, 16, 64–459.

    Article  Google Scholar 

  2. Bekisz, J., Baron, S., Balinsky, C., Morrow, A., & Zoon, K. C. (2010). Antiproliferative properties of type I and type II interferon. Pharmaceuticals, 3(4), 994–1015.

    Article  CAS  Google Scholar 

  3. Li, H., Li, X., Liu, Q., Shi, Z., & Shi, D. (2013). Expression of biologically active human recombinant interferon Alpha 2b in human breast cancer cell line Bcap-37. Applied Biochemistry and Biotechnology, 171(6), 1535–1544.

    Article  CAS  Google Scholar 

  4. El-Baky, N. A., and Redwan, E. M., 2015. Therapeutic Alpha-Interferons Protein: Structure, Production, and Biosimilar. Biochemistry and Biotechnology, 45, 109–127.

    CAS  Google Scholar 

  5. Bae, J. Y., Koo, B. K., Ryu, H. B., Song, J. A., Nguyen, M. T., Vu, T. T., Son, Y. J., Lee, H. K., & Choe, H. (2013). Cu/Zn incorporation during purification of soluble human EC-SOD from E. coli stabilizes proper disulfide bond formation. Applied Biochemistry and Biotechnology, 169(5), 1633–1647.

    Article  CAS  Google Scholar 

  6. Hughes, G. (2016). Friendly pharmacodynamics: a simple introduction. Nurse Prescribing, 14(1), 34–43.

    Article  Google Scholar 

  7. Wang, Y. S., Youngster, S., Grace, M., Bausch, J., Bordens, R., & Wyss, D. F. (2002). Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Advanced Drug Delivery Reviews, 54(4), 547–570.

    Article  CAS  Google Scholar 

  8. El-Dabaa, E., Saber, M. A., Roshdy, W. M., Rabea, A. M. (2016). Integrated high yield process for production of native structure recombinant human interferon alpha 2b with high therapeutic efficacy and significant purity. Patent ID 522/2016. Submitted to the patent office of Academy of Scientific Research & Technology (Ministry of Scientific Research, Arab Republic of Egypt) at 27/3/2016.

  9. Balcombe, J. P. 2005. Laboratory environments and rodents behavioral needs: a review. Laboratory Animals, 40, 217–235.

    Article  Google Scholar 

  10. Jungbauer, A., & Kaar, W. (2007). Current status of technical protein refolding. Journal of Biotechnology, 128(3), 587–596.

    Article  CAS  Google Scholar 

  11. Koros, W. J., Ma, Y. H., & Shimidzu, T. (1996). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Applied Chemistry, 86(7), 1479–1489.

    Article  Google Scholar 

  12. Bradford, M. M. (1976). Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  13. Sambrook, J. and Russell, D.W., 2001. Commonly used techniques in molecular cloning. In: molecular cloning, volume 3, 3rd edition (eds. Sambrook and Rusell). NY, USA: Cold Spring Harbor Press.

  14. Young, N. S., Levin, J., & Prendergast, R. A. (1972). An invertebrate coagulation system activated by endotoxin: evidence for enzymatic mediation. The Journal of Clinical Investigation, 51(7), 1790–1797.

    Article  CAS  Google Scholar 

  15. Zarrin, A., Foroozesh, M., Hamidi, M., & Mohammadi-Samani, S. A. (2006). A simple and rapid HPLC method for quantitation of interferon-α2b in dosage forms and delivery systems. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 833(2), 199–203.

    Article  CAS  Google Scholar 

  16. Pitt, J. J. (2009). Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. Clinical Biochemistry Reviews, 30(1), 19–34.

    Google Scholar 

  17. Parmanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y., Peter, L., Bartner, P. L., Weber, P. C., & Bose, A. K. (2002). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Science, 11, 2676–2687.

    Article  Google Scholar 

  18. Burnette, W. N. (1981). “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112(2), 195–203.

    Article  CAS  Google Scholar 

  19. Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 51(12), 2415–2418.

    Article  CAS  Google Scholar 

  20. Rubinstein, S., Familletti, P. C., & Pestka, S. (1981). Convenient assay for interferons. Journal of Virology, 37(2), 755–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Osborn, B. L., Olsen, H. S., Nardelli, B., Murray, J. H., Zhou, J. X., Garcia, A., Moody, G., Zaritskaya, L. S., & Sung, C. (2002). Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. The Journal of Pharmacology and Experimental Therapeutics, 303(2), 540–548.

    Article  CAS  Google Scholar 

  22. Yang, F., Shu, Y. J., Yang, Y. Q., Song, F. L., Pan, Y. F., Long, X. Y., Chen, G., & Zhang, Y. M. (2011). The pharmacokinetics of recombinant human interferon-alpha-2b poly(lactic-co-glycolic acid) microspheres in rats. Journal of Microencapsulation, 28(6), 483–489.

    Article  CAS  Google Scholar 

  23. Ahsan, F., Gardner, Q. A., Rashid, N., Towers, G. J., & Akhtar, M. (2017). Preventing the N-terminal processing of human interferon α-2b and its chimeric derivatives expressed in Escherichia coli. Bioorganic Chemistry, 76, 294–302.

    Article  Google Scholar 

  24. Xu, J., Tan, L., Goodrum, K. J., & Kieliszewski, M. J. (2007). High-yields and extended serum half-life of human interferon α2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnology and Bioengineering, 97(5), 997–1008.

    Article  CAS  Google Scholar 

  25. Liu, Y. H., Wylie, D., Zhao, J., Cure, R., Cutler, C., Cannon-Carlson, S., Yang, X., Nagabhushan, T. L., & Pramanik, B. N. (2011). Mass spectrometric characterization of the isoforms in Escherichia coli recombinant DNA-derived interferon alpha-2b. Analytical Biochemistry, 408(1), 105–117.

    Article  CAS  Google Scholar 

  26. Ahsan, F., Arif, A., Mahmood, N., Gardner, Q. T., Rashid, N., & Akhtar, M. (2014). Characterization and bioassay of post-translationally modified interferon α-2b expressed in Escherichia coli. Journal of Biotechnology, 184, 6–11.

    Article  Google Scholar 

  27. Magalhães, P. O., Lopes, A. M., Mazzola, P. G., Rangel-Yagui, C., Penna, T. C., & Pessoa Jr., A. (2007). Methods of Endotoxin Removal from Biological Preparations. Journal of Pharmacy & Pharmaceutical Sciences, 10(3), 388–404.

    Google Scholar 

  28. Schwarz, H., Schmittner, M., Duschl, A., & Horejs-Hoeck, J. (2014). Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS One, 9(12), 113840–113848.

    Article  Google Scholar 

  29. Fukuyama, Y., Iwamoto, S., & Tanaka, K. J. (2006). Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. Journal of Mass Spectrometry, 41(2), 191–201.

    Article  CAS  Google Scholar 

  30. Srebalus Barnes, C. A., & Lim, A. (2007). Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrometry Reviews, 26(3), 370–388.

    Article  CAS  Google Scholar 

  31. Liao, Y. D., Jeng, J. C., Wang, C. F., Wang, S. C., & Chang, S. T. (2004). Removal of N-terminal methionine from recombinant proteins by engineeredE. colimethionine aminopeptidase. Protein Science, 13(7), 1802–1810.

    Article  CAS  Google Scholar 

  32. Arif, A., Gardner, Q. T., Rashid, N., & Akhtar, M. (2015). Production of human interferon alpha-2b in Escherichia coli and removal of N-terminal methionine utilizing archaeal methionine aminopeptidase. Biologia, 70, 982–987.

    Article  CAS  Google Scholar 

  33. Lim, W. K., Rosgen, J., & Englander, S. W. (2009). Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. PNAS, 106(8), 2595–2600.

    Article  CAS  Google Scholar 

  34. Santana, H., Martinez, E., Sanchez, J. C., Maya, G., & Sosa, R. (1999). Molecular characterization of recombinant human interferon alpha-2b produced in Cuba. Biotecnologia Aplicada, 16, 154–159.

    CAS  Google Scholar 

  35. Bordens, R., Grossberg, S. E., & Trotta, P. P. (1997). Molecular and biological characterization of recombinant interferon-α2. Seminars Oncology, 24(3), 41–51.

    CAS  Google Scholar 

  36. Tarelli, E., Mire-Sluis, A., Tivnann, H. A., Bolgiano, B., Crane, D. T., Gee, C., Lemercinier, X., Athayde, M. L., Sutcliffe, N., Corran, P. H., & Rafferty, B. (1998). Recombinant human albumin as a stabilizer for biological materials and for the preparation of international reference reagents. Biologicals, 26(4), 331–346.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Prof. Mohamed Salah Eldin Mohamed (Parasitology Department, Theodor Bilharz Research Institute) for helping in experimental animal part.

Funding

This work was supported by the STDF project Grant No. 1454.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wael M. El-Sayed or Ehab El-Dabaa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, R., El-Sayed, W.M., Samir, S. et al. Molecular and Biological Characterization of a Prepared Recombinant Human Interferon Alpha 2b Isoform. Appl Biochem Biotechnol 188, 72–86 (2019). https://doi.org/10.1007/s12010-018-2908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2908-y

Keywords

Navigation