Skip to main content
Log in

Investigation on the Cultivation Conditions of a Newly Isolated Fusarium Fungal Strain for Enhanced Lipid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fusarium equiseti UMN-1 fungal strain isolated from soybean is selected as a potential oleaginous fungal strain for biodiesel generation. It possesses desirable features, such as high lipid content (up to 56%) and high fatty acid methyl ester (FAME) content (more than 98%) in total lipids, and also has the capability to produce cellulase. This research focused on the investigation of the characteristics of this strain and optimization of culture conditions to enhance lipid production. Impact of temperature, agitation, C/N ratio, medium composition, and carbon and nitrogen sources has been observed, and central composite design (CCD) has been applied to improve the lipid accumulation. The optimum range for temperature, agitation, C/N ratio, and carbon and nitrogen concentrations was discovered, and the CCD model with the optimized growth medium and growth conditions achieved a maximum lipid production of 3.89 g/L. This research on F. equiseti UMN-1 fungal strain is expected to improve the feasibility of using microbial lipids of F. equiseti UMN-1 strains as the source of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Durrett, T. P., Benning, C., & Ohlrogge, J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal, 54(4), 593–607.

    Article  CAS  Google Scholar 

  2. Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846.

    Article  CAS  Google Scholar 

  3. Wynn, J. P., Ratledge, C., Hamid, A. A., & Li, Y. (2001). Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology, 147(10), 2857–2864.

    Article  CAS  Google Scholar 

  4. Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749–756.

    Article  CAS  Google Scholar 

  5. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268.

    Article  CAS  Google Scholar 

  6. Jin, M. J., et al. (2015). Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 33(1), 43–54.

    Article  CAS  Google Scholar 

  7. Yang, Y., Yan, M., & Hu, B. (2014). Endophytic fungal strains of soybean for lipid production. Bioenergy Research, 7(1), 353–361.

    Article  CAS  Google Scholar 

  8. Amanullah, A., Christensen, L. H., Hansen, K., Nienow, A. W., & Thomas, C. R. (2002). Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnology and Bioengineering, 77(7), 815–826.

    Article  CAS  Google Scholar 

  9. Santamauro, F., Whiffin, F. M., Scott, R. J., & Chuck, C. J. (2014). Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology for Biofuels, 7(1), 34.

    Article  Google Scholar 

  10. Jang, H. D., Lin, Y. Y., & Yang, S. S. (2005). Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresource Technology, 96(15), 1633–1644.

    Article  CAS  Google Scholar 

  11. Angerbauer, C., Siebenhofer, M., Mittelbach, M., & Guebitz, G. M. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051–3056.

    Article  CAS  Google Scholar 

  12. Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass & Bioenergy, 33(4), 573–580.

    Article  CAS  Google Scholar 

  13. Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100(19), 4535–4538.

    Article  CAS  Google Scholar 

  14. Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D. D. Y., & Bao, J. (2009). Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology, 159(3), 591–604.

    Article  CAS  Google Scholar 

  15. Ratledge, C. (2002). Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transactions, 30(Pt 6), 1047–1050.

    Article  CAS  Google Scholar 

  16. Sharma, A., Rawat, U. S., & Yadav, B. K. (2012). Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. ISRN Agronomy, 2012, 9.

    Google Scholar 

  17. Carapito, R., Hatsch, D., Vorwerk, S., Petkovski, E., Jeltsch, J. M., & Phalip, V. (2008). Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genetics and Biology, 45(5), 738–748.

    Article  CAS  Google Scholar 

  18. Indarti, E., Majid, M. I. A., Hashim, R., & Chong, A. (2005). Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis, 18(2–3), 161–170.

    Article  CAS  Google Scholar 

  19. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  21. Farooq, S.. 2005. Physiological studies of Fusarium oxysporum f. sp. ciceri. International Journal of Agriculture and Biology.

  22. Suutari, M., Liukkonen, K., & Laakso, S. (1990). Temperature adaptation in yeasts: the role of fatty acids. Journal of General Microbiology, 136(8), 1469–1474.

    Article  CAS  Google Scholar 

  23. Gounot, A. M. (1991). Bacterial life at low temperature: physiological aspects and biotechnological implications. The Journal of Applied Bacteriology, 71(5), 386–397.

    Article  CAS  Google Scholar 

  24. Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in Food Science and Food Safety, 3(1), 1–20.

    Article  CAS  Google Scholar 

  25. Weinstein, R. N., Montiel, P. O., & Johnstone, K. (2000). Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 92(2), 222–229.

    Article  CAS  Google Scholar 

  26. Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219–1227.

    Article  CAS  Google Scholar 

  27. Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051.

    Article  CAS  Google Scholar 

  28. Li, Y., Wadso, L., & Larsson, L. (2009). Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti—correlations between produced heat, ergosterol content and biomass. Journal of Applied Microbiology, 106(5), 1494–1501.

    Article  CAS  Google Scholar 

  29. Ensari, S., & Lim, H. C. (2003). Apparent effects of operational variables on the continuous culture of Corynebacterium lactofermentum. Process Biochemistry, 38, 1531–1538.

    Article  CAS  Google Scholar 

  30. Yang, F. C., & Lin, I. H. (1998). Production of acid protease using thin stillage from a rice-spirit distillery by Aspergillus niger. Enzyme and Microbial Technology, 23(6), 397–402.

    Article  CAS  Google Scholar 

  31. Rossi, R., Pastorelli, G., Cannata, S., & Corino, C. (2010). Recent advances in the use of fatty acids as supplements in pig diets: a review. Animal Feed Science and Technology, 162(1–2), 1–11.

    Article  CAS  Google Scholar 

  32. Somashekar, D., Venkateshwaran, G., Sambaiah, K., & Lokesh, B. R. (2003). Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochemistry, 38(12), 1719–1724.

    Article  CAS  Google Scholar 

  33. Niranjane, A. P., Madhou, P., & Stevenson, T. W. (2007). The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme and Microbial Technology, 40(6), 1464–1468.

    Article  CAS  Google Scholar 

  34. Chen, H.-C., & Chang, C.-C. (1996). Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnology Progress, 12(3), 338–341.

    Article  CAS  Google Scholar 

  35. Martin, C. E., Oh, C. S., & Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochimica et Biophysica Acta, 1771(3), 271–285.

    Article  CAS  Google Scholar 

  36. Mansilla, M. C., & de Mendoza, D. (2005). The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Archives of Microbiology, 183(4), 229–235.

    Article  CAS  Google Scholar 

  37. Wiebe, M. G., Koivuranta, K., Penttilä, M., & Ruohonen, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12(1), 26.

    Article  CAS  Google Scholar 

  38. Ruan, Z., Zanotti, M., Wang, X., Ducey, C., & Liu, Y. (2012). Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresource Technology, 110, 198–205.

    Article  CAS  Google Scholar 

  39. Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., & Zhao, Z. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels, 4(1), 25.

    Article  CAS  Google Scholar 

  40. Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation. Bioresource Technology, 99(16), 7881–7885.

    Article  CAS  Google Scholar 

  41. Aggelis, G., & Komaitis, M. (1999). Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnology Letters, 21(9), 747–749.

    Article  CAS  Google Scholar 

  42. Li, Y., Zhao, Z., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.

    Article  Google Scholar 

  43. Zhang, J., Fang, X., Zhu, X. L., Li, Y., Xu, H. P., Zhao, B. F., Chen, L., & Zhang, X. D. (2011). Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass and Bioenergy, 35(5), 1906–1911.

    Article  CAS  Google Scholar 

  44. Vicente, G., Bautista, L. F., Rodríguez, R., Gutiérrez, F. J., Sádaba, I., Ruiz-Vázquez, R. M., Torres-Martínez, S., & Garre, V. (2009). Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 48(1), 22–27.

    Article  CAS  Google Scholar 

  45. Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 95(3), 287–291.

    Article  CAS  Google Scholar 

  46. Chunjie Xia, J. Z., Zhang, W., & Hu, B. (2011). A new cultivation method for bioenergy production—cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnology for Biofuels, 4, 15.

    Article  Google Scholar 

  47. Zhang, J. G., & Hu, B. (2012). Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Applied Biochemistry and Biotechnology, 166(4), 1034–1046.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Grand-in-Aid program at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Hu, B. Investigation on the Cultivation Conditions of a Newly Isolated Fusarium Fungal Strain for Enhanced Lipid Production. Appl Biochem Biotechnol 187, 1220–1237 (2019). https://doi.org/10.1007/s12010-018-2870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2870-8

Keywords

Navigation