Skip to main content
Log in

Enhancement of Paenibacillus sp. D9 Lipopeptide Biosurfactant Production Through the Optimization of Medium Composition and Its Application for Biodegradation of Hydrophobic Pollutants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Interests in biosurfactant in industrial and environmental applications have increased considerably in recent years, owing to their potential benefits over synthetic counterparts. The present study aimed at analyzing the stability and oil removal efficiency of a new lipopeptide biosurfactant produced by Paenibacillus sp. D9 and its feasibility of its use in biotechnological applications. Paenibacillus sp. D9 was evaluated for optimal growth conditions and improved production yield of lipopeptide biosurfactant with variations in different substrate parameters such as carbon (C), nitrogen (N), C:N: ratio, metal supplements, pH, and temperature. Enhanced biosurfactant production was observed when using diesel fuel and ammonium sulfate as carbon and nitrogen source respectively. The maximum biosurfactant yield of 4.11 g/L by Paenibacillus sp. D9 occurred at a C/N ratio of 3:1, at pH 7.0, 30 °C, 4.0 mM MgSO4, and 1.5% inoculum size. The D9 biosurfactant was found to retain surface-active properties under the extreme conditions such as high thermal, acidic, alkaline, and salt concentration. The ability to emulsify further emphasizes its potential usage in biotechnological application. Additionally, the lipopeptide biosurfactant exhibited good performance in the degradation of highly toxic substances when compared with chemical surfactant, which proposes its probable application in biodegradation, microbial-enhanced oil recovery or bioremediation. Furthermore, the biosurfactants were effective in a test to stimulate the solubilization of hydrophobic pollutants in both liquid environments removing 49.1 to 65.1% diesel fuel including hydrophobic pollutants. The study highlights the usefulness of optimization of culture parameters and their effects on biosurfactant production, high stability, improved desorption, and solubilization of hydrophobic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BioS:

Biosurfactant

BioSs:

Biosurfactants

SDS:

Sodium dodecyl sulfate

LB:

Luria-Bertani

BH:

Bushnell Haas

DCW:

Dry cell weight

ST:

Surface tension

E24:

Emulsification Index

References

  1. Burgos-Diaz, C., Pons, R., Teruel, J. A., Aranda, F. J., Ortiz, A., Manresa, A., & Marques, A. M. (2013). The production and physicochemical properties of a biosurfactant mixture obtained from Sphingobacterium detergens. Journal of Colloid and Interface Science, 394, 368–379.

    Article  CAS  PubMed  Google Scholar 

  2. Ghribi, D., & Ellouze-Chaabouni, S. (2011). Enhancement of Bacillus subtilis Lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnology Research International, 2011, 653654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rufino, R. D., de Luna, J. M., de Campos Takaki, G. M., & Sarubbo, L. A. (2014). Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology, 17(1), 34–38.

    Article  CAS  Google Scholar 

  4. Goel, M. (2014) Carbon capture, storage and, Utilization: A possible climate change solution for energy industry. In: Goel, M., Sudhakar, M., & Shahi, R.V. (Eds), The Energy and Resources Institute (TERI).

  5. de Cássia F S Silva, R., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International Journal of Molecular Sciences, 15, 12523–12542.

    Article  CAS  PubMed  Google Scholar 

  6. Marchant, R., & Banat, I. M. (2012). Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology Letters, 34(9), 1597–1605.

    Article  CAS  PubMed  Google Scholar 

  7. Sekhon, K. K., Khanna, S., & Cameotra, S. S. (2012). Biosurfactant production and potential correlation with esterase activity. Journal of Petroleum & Environmental Biotechnology, 3(7), 133.

    Google Scholar 

  8. Chakraborty, S., Ghosh, M., Chakraborti, S., Jana, S., Sen, K. K., Kokare, C., & Zhang, L. (2015). Biosurfactant produced from Actinomycetes nocardiopsis A17: characterization and its biological evaluation. International Journal of Biological Macromolecules, 79, 405–412.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J., Xue, Q., Gao, H., Lai, H., & Wang, P. (2016). Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microbial Cell Factories, 15(1), 168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anjum, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology, 213, 262–269.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Shibulal, B. (2014). Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 114, 324–333.

    Article  CAS  PubMed  Google Scholar 

  12. Campos, J. M., Stamford, T. L., & Sarubbo, L. A. (2014). Production of a bioemulsifier with potential application in the food industry. Applied Biochemistry and Biotechnology, 172(6), 3234–3252.

    Article  CAS  PubMed  Google Scholar 

  13. Gudina, E. J., Fernandes, E. C., Rodrigues, A. I., Teixeira, J. A., & Rodrigues, L. R. (2015). Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology, 6, 59.

    PubMed  PubMed Central  Google Scholar 

  14. Das, P., Mukherjee, S., & Sen, R. (2009). Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresource Technology, 100(2), 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24(11), 509–515.

    Article  CAS  PubMed  Google Scholar 

  16. Ganesh, A., & Lin, J. (2009). Diesel degradation and biosurfactant production by Gram-positive isolates. African Journal of Biotechnology, 8, 5847–5854.

    Article  CAS  Google Scholar 

  17. Bushnell, L., & Haas, H. (1941). The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41, 653.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Abouseoud, M., Yataghene, A., Amrane, A., & Maachi, R. (2008). Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. Journal of Industrial Microbiology and Biotechnology, 35(11), 1303–1308.

    Article  CAS  PubMed  Google Scholar 

  19. Lotfabad, T. B., Shourian, M., Roostaazad, R., Najafabadi, A. R., Adelzadeh, M. R., & Noghabi, K. A. (2009). An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids and Surfaces B: Biointerfaces, 69(2), 183–193.

    Article  CAS  PubMed  Google Scholar 

  20. Yeh, M. S., Wei, Y. H., & Chang, J. S. (2005). Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnology Progress, 21(4), 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  21. Sousa, M., Melo, V. M., Rodrigues, S., Sant’ana, H. B., & Goncalves, L. R. (2012). Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess and Biosystems Engineering, 35(6), 897–906.

    Article  CAS  PubMed  Google Scholar 

  22. Darvishi, P., Ayatollahi, S., Mowla, D., & Niazi, A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids and Surfaces B: Biointerfaces, 84(2), 292–300.

    Article  CAS  PubMed  Google Scholar 

  23. Obayori, O. S., Ilori, M. O., Adebusoye, S. A., Oyetibo, G. O., Omotayo, A. E., & Amund, O. O. (2009). Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World Journal of Microbiology and Biotechnology, 25(9), 1615–1623.

    Article  CAS  Google Scholar 

  24. Burgos-Diaz, C., Pons, R., Espuny, M. J., Aranda, F. J., Teruel, J. A., Manresa, A., Ortiz, A., & Marques, A. M. (2011). Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. Journal of Colloid and Interface Science, 361(1), 195–204.

    Article  CAS  PubMed  Google Scholar 

  25. Kiran, G. S., Thomas, T. A., & Selvin, J. (2010). Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids and Surfaces B: Biointerfaces, 78(1), 8–16.

    Article  CAS  PubMed  Google Scholar 

  26. Bharali, P., & Konwar, B. K. (2011). Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Applied Biochemistry and Biotechnology, 164(8), 1444–1460.

    Article  CAS  PubMed  Google Scholar 

  27. Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 285, 198–204.

    Article  CAS  Google Scholar 

  28. Pereira, J. F., Gudiña, E. J., Costa, R., Vitorino, R., Teixeira, J. A., Coutinho, J. A., & Rodrigues, L. R. (2013). Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, 111, 259–268.

    Article  CAS  Google Scholar 

  29. Wang, W., Cai, B., & Shao, Z. (2014). Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Frontiers in Microbiology, 5, 711.

    PubMed  PubMed Central  Google Scholar 

  30. Ghojavand, H., Vahabzadeh, F., Roayaei, E., & Shahraki, A. K. (2008). Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). Journal of Colloid and Interface Science, 324(1-2), 172–176.

    Article  CAS  PubMed  Google Scholar 

  31. Joshi, S. J., & Desai, A. J. (2013). Bench-scale production of biosurfactants and their potential in ex-situ MEOR application. Soil and Sediment Contamination: An International Journal, 22(6), 701–715.

    Article  CAS  Google Scholar 

  32. Abbasi, H., Hamedi, M. M., Lotfabad, T. B., Zahiri, H. S., Sharafi, H., Masoomi, F., Moosavi-Movahedi, A. A., Ortiz, A., Amanlou, M., & Noghabi, K. A. (2012). Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. Journal of Bioscience and Bioengineering, 113(2), 211–219.

    Article  CAS  PubMed  Google Scholar 

  33. Onwosi, C. O., & Odibo, F. J. (2012). Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World Journal of Microbioliology and Biotechnology, 28(3), 937–942.

    Article  CAS  Google Scholar 

  34. Mata-Sandoval, J. C., Karns, J., & Torrents, A. (2001). Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiological Research, 155(4), 249–256.

    Article  CAS  PubMed  Google Scholar 

  35. Saimmai, A., Onlamool, T., Sobhon, V., & Maneerat, S. (2013). An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand. World Journal of Microbioliology and Biotechnology, 29(1), 87–102.

    Article  CAS  Google Scholar 

  36. Kokare, C., Kadam, S., Mahadik, K., & Chopade, B. (2007). Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian Journal of Biotechnology, 6, 78–84.

    CAS  Google Scholar 

  37. Wei, Y.-H., Lai, C.-C., & Chang, J.-S. (2007). Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry, 42(1), 40–45.

    Article  CAS  Google Scholar 

  38. Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., Soleimani, M., & Jamshidnejad, Z. (2011). Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids and Surfaces B: Biointerfaces, 82(1), 33–39.

    Article  CAS  PubMed  Google Scholar 

  39. Kiran, G. S., Hema, T., Gandhimathi, R., Selvin, J., Thomas, T. A., Ravji, T. R., & Natarajaseenivasan, K. (2009). Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids and Surfaces B: Biointerfaces, 73(2), 250–256.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, S.-T. (2011). Bioprocessing for value-added products from renewable resources: New technologies and applications (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  41. Ganesh, A., Lin, J., & Singh, M. (2014). Detecting virus-like particles from the Umgeni River, South Africa. CLEAN - Soil, Air, Water, 42, 393–407.

    Article  CAS  Google Scholar 

  42. Waqas, M., Zafar, R. M. S., & Awais, H. (2013). Biosurfactant production by Pseudomonas aeruginosa strains on 1ml of inoculum size. Pakistan Journal of Medical and Health Sciences, 7, 421–423.

    Google Scholar 

  43. Roy, A. (2017). Effect of various culture parameters on the bio-surfactant production from bacterial isolates. Journal of Petroleum & Environmental Biotechnology, 8(6), 350.

    Article  CAS  Google Scholar 

  44. Vega, C., & De Miguel, E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. The Journal of Chemical Physics, 126(15), 154707.

    Article  CAS  PubMed  Google Scholar 

  45. Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technology, 99(1), 195–199.

    Article  CAS  PubMed  Google Scholar 

  46. Gudiña, E. J., Pereira, J. F. B., Rodrigues, L. R., Coutinho, J. A. P., & Teixeira, J. A. (2012). Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. International Biodeterioration and Biodegradation, 68, 56–64.

    Article  CAS  Google Scholar 

  47. de França, Í. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., Melo, V. M. M., de Sant’ana, H. B., & Gonçalves, L. R. B. (2015). Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catalysis Today, 255, 10–15.

    Article  CAS  Google Scholar 

  48. Gudina, E. J., Teixeira, J. A., & Rodrigues, L. R. (2010). Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 76(1), 298–304.

    Article  CAS  PubMed  Google Scholar 

  49. Vaz, D. A., Gudina, E. J., Alameda, E. J., Teixeira, J. A., & Rodrigues, L. R. (2012). Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids and Surfaces B: Biointerfaces, 89, 167–174.

    Article  CAS  PubMed  Google Scholar 

  50. Jha, S. S., Joshi, S. J., & Geetha, S. J. (2016). Lipopeptide production by Bacillus subtilis R1 and its possible applications. Brazilian Journal of Microbiology, 47(4), 955–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., Elshafie, A. E., Al-Bemani, A. S., Al-Bahri, A., & Al-Mandhari, M. S. (2016). Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Frontiers in Microbiology, 7, 1853.

    PubMed  PubMed Central  Google Scholar 

  52. Kaczorek, E., & Olszanowski, A. (2011). Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: a cell surface modification. Water, Air and Soil Pollution, 214(1-4), 451–459.

    Article  CAS  Google Scholar 

  53. Hmidet, N., Ben Ayed, H., Jacques, P. and Nasri, M. (2017) Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: application for diesel biodegradation. BioMed Research International.

  54. Ayed, H. B., Jemil, N., Maalej, H., Bayoudh, A., Hmidet, N., & Nasri, M. (2015). Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. International Biodeterioration and Biodegradation, 99, 8–14.

    Article  CAS  Google Scholar 

  55. Mnif, I., Mnif, S., Sahnoun, R., Maktouf, S., Ayedi, Y., Ellouze-Chaabouni, S., & Ghribi, D. (2015). Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environmental Science and Pollution Research, 22(19), 14852–14861.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all those who contributed directly or indirectly in the development of this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnson Lin.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimoh, A.A., Lin, J. Enhancement of Paenibacillus sp. D9 Lipopeptide Biosurfactant Production Through the Optimization of Medium Composition and Its Application for Biodegradation of Hydrophobic Pollutants. Appl Biochem Biotechnol 187, 724–743 (2019). https://doi.org/10.1007/s12010-018-2847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2847-7

Keywords

Navigation