Skip to main content
Log in

Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Succinic acid is one of the most interesting platform chemicals that can be produced in a biorefinery approach. The paper reports the characterization of the growth kinetics of Actinobacillus succinogenes DSM 22257 using glucose as carbon source. Tests were carried out in a continuous bioreactor operated under controlled pH. Under steady-state conditions, the conversion process was characterized in terms of concentration of glucose, cells, acids, and pH. The effects of acid—succinic, acetic, and formic—concentration in the medium on fermentation performance were investigated. The fermentation was interpreted according to several models characterized by substrate and product inhibition. The selected kinetic model of biomass growth and of metabolite production described the microorganism growth rate under a broad interval of operating conditions. Under the investigated operating conditions, results pointed out that: no substrate inhibition was observed; acetic acid did not inhibit the cell growth and succinic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

S max, P max :

Critical concentrations of substrate or products (g/L)

AA, FA, G, SA:

Concentration of acetic, formic and succinic acid, glucose (g/L)

μ :

Specific growth rate (h-1)

μ max :

Maximum specific growth rate (h-1)

D :

Dilution rate (h-1)

K S :

Substrate saturation constant (g/L)

K i :

Substrate inhibition coefficient (g/L)

K P :

Products inhibition coefficient (g/L)

n i :

Exponent of inhibitory products

Y ATP :

ATP yield (gDM/molATP)

\( {Y}_{\mathrm{ATP}}^{\mathrm{MAX}} \) :

Maximum ATP yield (gDM/molATP)

Y X/SA :

Mass ratio between biomass and succinic acid (gDM/g)

Y SA/ATP :

Ratio between succinic acid and ATP moles (g/molATP)

X :

Cell concentration (gDM/L)

δ 2 :

Mean square deviation

R 2 :

Correlation coefficient

References

  1. Nghiem, N. P., Davison, B. H., Suttle, B. E., & Richardson, G. R. (1997). Production of succinic acid by Anaerobiospirillum succiniciproducens. Applied Biochemistry and Biotechnology, 63–65(1), 565–576. https://doi.org/10.1007/BF02920454.

    Article  PubMed  Google Scholar 

  2. Zeikus, J. G., Jain, M. K., & Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology, 51(5), 545–552. https://doi.org/10.1007/s002530051431.

    Article  CAS  Google Scholar 

  3. Guettler, M. V., Rumler, D., & Jain, M. K. (1999). Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. International Journal of Systematic Bacteriology, 49, 207–216.

    Article  CAS  PubMed  Google Scholar 

  4. Samuelov, N. S., Lamed, R., Lowe, S., & Zeikus, J. G. (1991). Influence of C02-HC03- levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Applied and Environmental Microbiology, 57(10), 3013–3019.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, P., Lee, S., Hong, S., & Chang, H. (2002). Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Applied Microbiology and Biotechnology, 58(5), 663–668. https://doi.org/10.1007/s00253-002-0935-6.

    Article  CAS  PubMed  Google Scholar 

  6. Salvachúa, D., Smith, H., St. John, P. C., Mohagheghi, A., Peterson, D. J., Black, B. A., Dowe, N., & Beckham, G. T. (2016). Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens. Bioresource Technology, 214, 558–566. https://doi.org/10.1016/j.biortech.2016.05.018.

    Article  CAS  PubMed  Google Scholar 

  7. Isar, J., Agarwal, L., Saran, S., & Saxena, R. K. (2006). Succinic acid production from Bacteroides fragilis: process optimization and scale up in a bioreactor. Anaerobe, 12(5-6), 231–237. https://doi.org/10.1016/j.anaerobe.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  8. Jantama, K., Zhang, X., Moore, J. C., Shanmugam, K. T., Svoronos, S. A., & Ingram, L. O. (2008). Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 101(5), 881–893. https://doi.org/10.1002/bit.22005.

    Article  CAS  PubMed  Google Scholar 

  9. Guettler, I. M. V. (1996). Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. Michigan Biotechnology Institute, USA, US patent 5,504,004, (55618).

  10. Ferone, M., Ercole, A., Olivieri, G., Salatino, P., & Marzocchella, A. (2018). Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed bed reactor. Biotechnology for Biofuels, 11. https://doi.org/10.1186/s13068-018-1143-7.

  11. Carvalho, M., Matos, M., Roca, C., & Reis, M. A. M. (2014). Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor. New Biotechnology, 31(1), 133–139. https://doi.org/10.1016/j.nbt.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Z., Li, M., Qi, Q., Gao, C., & Lin, C. S. K. (2014). Mixed food waste as renewable feedstock in succinic acid fermentation. Applied Biochemistry and Biotechnology, 174(5), 1822–1833. https://doi.org/10.1007/s12010-014-1169-7.

    Article  CAS  PubMed  Google Scholar 

  13. Du, C., Lin, S. K. C., Koutinas, A., Wang, R., & Webb, C. (2007). Succinic acid production from wheat using a biorefining strategy. Applied Microbiology and Biotechnology, 76(6), 1263–1270. https://doi.org/10.1007/s00253-007-1113-7.

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, P., Zhang, K., Yan, Q., Xu, Y., & Sun, Z. (2013). Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. Journal of Industrial Microbiology and Biotechnology, 40(8), 831–840. https://doi.org/10.1007/s10295-013-1283-5.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y.-P., Zheng, P., Sun, Z.-H., Ni, Y., Dong, J.-J., & Wei, P. (2008). Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. Journal of Chemical Technology and Biotechnology, 83(5), 722–729. https://doi.org/10.1002/jctb.1862.

    Article  CAS  Google Scholar 

  16. Bretz, K., & Kabasci, S. (2012). Feed-control development for succinic acid production with Anaerobiospirillum succiniciproducens. Biotechnology and Bioengineering, 109(5), 1187–1192. https://doi.org/10.1002/bit.24387.

    Article  CAS  PubMed  Google Scholar 

  17. Nandasana, A. D., & Kumar, S. (2008). Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochemical Engineering Journal, 38(3), 277–284. https://doi.org/10.1016/j.bej.2007.07.014.

    Article  CAS  Google Scholar 

  18. Qureshi, N., Annous, B. A., Ezeji, T. C., Karcher, P., & Maddox, I. S. (2005). Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial Cell Factories, 24(4), 1–21. https://doi.org/10.1186/1475-2859-4-24.

    Article  CAS  Google Scholar 

  19. Maharaj, K., Bradfield, M. F. A., & Nicol, W. (2014). Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity. Applied Microbiology and Biotechnology, 98(17), 7379–7386. https://doi.org/10.1007/s00253-014-5779-3.

    Article  CAS  PubMed  Google Scholar 

  20. Corona-González, R. I., Miramontes-Murillo, R., Arriola-Guevara, E., Guatemala-Morales, G., Toriz, G., & Pelayo-Ortiz, C. (2014). Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid. Bioresource Technology, 164, 113–118. https://doi.org/10.1016/j.biortech.2014.04.081.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, P., Cheng, Z., Hua, X., & Zheng, P. (2017). Construction of fibrous bed bioreactor for enhanced succinic acid production using wastewater of dextran fermentation. Bioprocess and Biosystems Engineering, 40, 1859–1866. https://doi.org/10.1007/s00449-017-1839-2.

    Article  CAS  PubMed  Google Scholar 

  22. López-Garzón, C. S., van der Wielen, L. A. M., & Straathof, A. J. J. (2014). Green upgrading of succinate using dimethyl carbonate for a better integration with fermentative production. Chemical Engineering Journal, 235, 52–60. https://doi.org/10.1016/j.cej.2013.09.017.

    Article  CAS  Google Scholar 

  23. Lee, P. C., Lee, S. Y., & Chang, H. N. (2010). Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess and Biosystems Engineering, 33(4), 465–471. https://doi.org/10.1007/s00449-009-0355-4.

    Article  CAS  PubMed  Google Scholar 

  24. Lin, S. K. C., Du, C., Koutinas, A., Wang, R., & Webb, C. (2008). Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochemical Engineering Journal, 41(2), 128–135. https://doi.org/10.1016/j.bej.2008.03.013.

    Article  CAS  Google Scholar 

  25. Vlysidis, A., Binns, M., Webb, C., & Theodoropoulos, C. (2011). Glycerol utilisation for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study. Biochemical Engineering Journal, 58–59, 1–11. https://doi.org/10.1016/j.bej.2011.07.004.

    Article  CAS  Google Scholar 

  26. Brink, H. G., & Nicol, W. (2014). Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures. Microbial Cell Factories, 13(111), 111. https://doi.org/10.1186/s12934-014-0111-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russo, M. E., Maffettone, P. L., Marzocchella, A., & Salatino, P. (2008). Bifurcational and dynamical analysis of a continuous biofilm reactor. Journal of Biotechnology, 135(3), 295–303. https://doi.org/10.1016/j.jbiotec.2008.04.003.

    Article  CAS  PubMed  Google Scholar 

  28. Ferone, M., Raganati, F., Olivieri, G., Salatino, P., & Marzocchella, A. (2017). Biosuccinic acid from lignocellulosic-based hexoses and pentoses by Actinobacillus succinogenes: characterization of the conversion process. Applied Biochemistry and Biotechnology, 183(4), 1465–1477. https://doi.org/10.1007/s12010-017-2514-4.

    Article  CAS  PubMed  Google Scholar 

  29. Bauchop, T., & Elsden, R. S. (1960). The growth of microorganisms in relation to their metabolism and energy supply. Journal of General Microbiology, 23, 457–469.

  30. Meyer, C. L., & Papoutsakis, E. T. (1989). Continuous and biomass recycle fermentations of Clostridium acetobutylicum. Part 1. Bioprocess Engineering, 4, 1–10.

  31. S. J. Pirt, (1965) The Maintenance Energy of Bacteria in Growing Cultures. Proceedings of the Royal Society B: Biological Sciences 163(991), 224–231

  32. S. J. Pirt, (1982) Maintenance energy: a general model for energy-limited and energy-sufficient growth. Archives of Microbiology 133(4), 300–302

  33. Bradfield, M. F. A., & Nicol, W. (2016). The pentose phosphate pathway leads to enhanced succinic acid flux in biofilms of wild-type Actinobacillus succinogenes. Applied Microbiology and Biotechnology, 100(22), 9641–9652. https://doi.org/10.1007/s00253-016-7763-6

  34. Michael W.W. Adams, (1990) The structure and mechanism of iron-hydrogenases. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1020(2), 115-145

  35. Urbance, S. E., Pometto, A. L., DiSpirito, A. A., & Denli, Y. (2004). Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Applied Microbiology and Biotechnology, 65, 664–670. https://doi.org/10.1007/s00253-004-1634-2

  36. van Heerden, C. D., & Nicol, W. (2013). Continuous succinic acid fermentation by Actinobacillus succinogenes. Biochemical Engineering Journal, 73, 5–11. https://doi.org/10.1016/j.bej.2013.01.015

  37. Bradfield, M. F. A., & Nicol, W. (2014). Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: Steady-state metabolic flux variation. Biochemical Engineering Journal, 85, 1–7. https://doi.org/10.1016/j.bej.2014.01.009

  38. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresource Technology, 74(1), 17–24. https://doi.org/10.1016/S0960-8524(99)00160-1

  39. Li, Q., Wang, D., Wu, Y., Yang, M., Li, W., Xing, J., & Su, Z. (2010). Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT. Journal of Microbiology, 48, 290–296. https://doi.org/10.1007/s12275-010-9262-2

  40. Pateraki, C., Almqvist, H., Ladakis, D., Lidén, G., Koutinas, A. A., & Vlysidis, A. (2016). Modelling succinic acid fermentation using a xylose based substrate. Biochemical Engineering Journal, 114, 26–41. https://doi.org/10.1016/j.bej.2016.06.011

Download references

Funding

The study was supported by the Ministero dell’Istruzione, delll’Università e della Ricerca project “Development of green technologies for production of BIOchemicals and their use in preparation and industrial application of POLImeric materials from agricultural biomasses cultivated in a sustainable way in Campania Region – BIOPOLIS” PON03PE_00107_1/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariateresa Ferone.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferone, M., Raganati, F., Olivieri, G. et al. Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics. Appl Biochem Biotechnol 187, 782–799 (2019). https://doi.org/10.1007/s12010-018-2846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2846-8

Keywords

Navigation