Skip to main content
Log in

Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a homogenization-based extraction method was developed and was compared to five conventional methods of squalene extraction. Squalene recovered from this novel procedure gave 3.5-fold, 10-fold, 16-fold, and 8.1-fold higher yield than standard procedures, viz., saponification with 60% KOH, acidic saponification, saponification with 18% KOH, and glass beads method, respectively. Furthermore, this procedure has been evaluated on laboratory Saccharomyces cerevisiae strains such as BY4742 and CEN.PK2-1C (native), deletion strains (ERG6 and ERG11), and tHMG1 overexpressed S. cerevisiae strains. When sonication method of cell lysis was replaced with homogenization, it was found that the yields were significantly higher and reached a value of 9 mg/g DCW in case of BY4742. In addition, squalene yield in ergosterol mutant strains has been analyzed and was found to be 1.8-fold and 3.4-fold higher in ERG6 and ERG11 deletion strains, respectively, than in BY4742. Squalene was also found to be higher at the optimized temperature of 30 °C and pH 6.0. Furthermore, tolerance of S. cerevisiae to external squalene at various concentrations has been carried and found that the organism was tolerant up to 25 g/L of squalene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paramasivan, K., & Mutturi, S. (2017). Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Critical Reviews in Biotechnology, 37(8), 974–989. https://doi.org/10.1080/07388551.2017.1299679.

    Article  CAS  PubMed  Google Scholar 

  2. Naziri, E., Mantzouridou, F., & Tsimidou, M. Z. (2011). Squalene resources and uses point to the potential of biotechnology. Lipid Technology, 23(12), 270–273. https://doi.org/10.1002/lite.201100157.

    Article  CAS  Google Scholar 

  3. Kohno, Y., Egawa, Y., Itoh, S., Nagaoka, S. i., Takahashi, M., & Mukai, K. (1995). Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 1256(1), 52–56. https://doi.org/10.1016/0005-2760(95)00005-W.

    Article  Google Scholar 

  4. Rao, C. V., Newmark, H. L., & Reddy, B. S. (1998). Chemopreventive effect of squalene on colon cancer. Carcinogenesis, 19(2), 287–290. https://doi.org/10.1093/carcin/19.2.287.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly, G. S. (1999). Squalene and its potential clinical uses. Alternative medicine review : a journal of clinical therapeutic, 4(1), 29–36.

    CAS  Google Scholar 

  6. Smith, T. J. (2000). Squalene: potential chemopreventive agent. Expert Opinion on Investigational Drugs, 9(8), 1841–1848. https://doi.org/10.1517/13543784.9.8.1841.

    Article  CAS  PubMed  Google Scholar 

  7. Bindu, B. S. C., Mishra, D. P., & Narayan, B. (2015). Inhibition of virulence of Staphylococcus aureus - a food borne pathogen - by squalene, a functional lipid. Journal of Functional Foods, 18, 224–234. https://doi.org/10.1016/j.jff.2015.07.008.

    Article  CAS  Google Scholar 

  8. Dhandapani, N., Ganesan, B., Anandan, R., Jeyakumar, R., Rajaprabhu, D. &, & Ezhilan, R. (2007). Synergistic effects of squalene and polyunsaturated fatty acid concentrate on lipid peroxidation and antioxidant status in isoprenaline-induced myocardial infarction in rats. African Journal of Biotechnology, 6(8).

  9. Bergquist, J., Englund, E., Pattanaik, B., Ubhayasekera, S. J. K., Stensjo, K., & Lindberg, P. (2014). Production of squalene in Synechocystis sp. PCC 6803, 9(3), 1–8. https://doi.org/10.1371/journal.pone.0090270.

    Article  CAS  Google Scholar 

  10. Polakowski, T., Stahl, U., & Lang, C. (1998). Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Applied Microbiology and Biotechnology, 49(1), 66–71. https://doi.org/10.1007/s002530051138.

    Article  CAS  PubMed  Google Scholar 

  11. Gershbein, L. L., & Singh, E. J. (1969). Hydrocarbons of dogfish and cod livers and herring oil. Journal of the American Oil Chemists’ Society, 46(10), 554–557.

    Article  CAS  PubMed  Google Scholar 

  12. Spanova, M., & Daum, G. (2011). Squalene - biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology, 113(11), 1299–1320. https://doi.org/10.1002/ejlt.201100203.

    Article  CAS  Google Scholar 

  13. Katabami, A., Li, L., Iwasaki, M., Furubayashi, M., Saito, K., & Umeno, D. (2015). Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. Journal of Bioscience and Bioengineering, 119(2), 165–171. https://doi.org/10.1016/j.jbiosc.2014.07.013.

    Article  CAS  PubMed  Google Scholar 

  14. Arnezeder, C., & Hampel, W. A. (1990). Influence of growth rate on the accumulation of ergosterol in yeast-cells. Biotechnology Letters, 12(4), 277–282. https://doi.org/10.1007/BF01093521.

    Article  CAS  Google Scholar 

  15. Kamimura, N., Hidaka, M., Masaki, H., & Uozumi, T. (1994). Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination. Applied Microbiology and Biotechnology, 42(2–3), 353–357. https://doi.org/10.1007/BF00902741.

    Article  CAS  PubMed  Google Scholar 

  16. Bhattacharjee, P., Shukla, V. B., Singhal, R. S., & Kulkarni, P. R. (2001). Studies on fermentative production of squalene. World Journal of Microbiology and Biotechnology, 17(8), 811–816. https://doi.org/10.1023/A:1013573912952.

    Article  CAS  Google Scholar 

  17. Garaiová, M., Zambojová, V., Šimová, Z., Griač, P., & Hapala, I. (2014). Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 14(2), 310–323. https://doi.org/10.1111/1567-1364.12107.

    Article  CAS  PubMed  Google Scholar 

  18. Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2009). Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. Journal of Agricultural and Food Chemistry, 57(14), 6189–6198. https://doi.org/10.1021/jf900673n.

    Article  CAS  PubMed  Google Scholar 

  19. Donald, K. A. G., Hampton, R. Y., & Fritz, I. B. (1997). Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 63(9), 3341–3344.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mantzouridou, F., & Tsimidou, M. Z. (2010). Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Research, 10(6), 699–707. https://doi.org/10.1111/j.1567-1364.2010.00645.x.

    Article  CAS  PubMed  Google Scholar 

  21. Hull, C. M., Loveridge, E. J., Rolley, N. J., Donnison, I. S., Kelly, S. L., & Kelly, D. E. (2014). Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock, 7, 133.

    Google Scholar 

  22. Shin, G. H., Veen, M., Stahl, U., & Lang, C. (2012). Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast, 29(9), 371–383. https://doi.org/10.1002/yea.2916.

    Article  CAS  PubMed  Google Scholar 

  23. Tokuhiro, K., Muramatsu, M., Ohto, C., Kawaguchi, T., Obata, S., Muramoto, N., Hirai, M., Takahashi, H., Kondo, A., Sakuradani, E., & Shimizu, S. (2009). Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(17), 5536–5543. https://doi.org/10.1128/AEM.00277-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paramasivan, K., & Mutturi, S. (2017). Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 65(37), 8162–8170. https://doi.org/10.1021/acs.jafc.7b02945.

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

  26. Daum, G., Tuller, G., Nemec, T., Hrastnik, C., Balliano, G., Cattel, L., Milla, P., Rocco, F., Conzelmann, A., Vionnet, C., Kelly, D. E., Schweizer, E., Schüller, H. J., Hojad, U., Greiner, E., & Finger, K. (1999). Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast (Chichester, England), 15(7), 601–614. https://doi.org/10.1002/(SICI)1097-0061(199905)15:7<601::AID-YEA390>3.0.CO;2-N.

    Article  CAS  Google Scholar 

  27. Otero, J. M., Vongsangnak, W., Asadollahi, M. a., Olivares-Hernandes, R., Maury, J., Farinelli, L., Farinelli, L., Barlocher, L., Østerås, M., Schalk, M., Clark, A., & Nielsen, J. (2010). Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics, 11(1), 723. https://doi.org/10.1186/1471-2164-11-723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154. https://doi.org/10.1111/j.1472-765X.2011.03082.x.

    Article  CAS  PubMed  Google Scholar 

  29. Gogate, P. R. (2011). Hydrodynamic cavitation for food and water processing. Food and Bioprocess Technology, 4(6), 996–1011. https://doi.org/10.1007/s11947-010-0418-1.

    Article  Google Scholar 

  30. Liu, D., Zeng, X. A., Sun, D. W., & Han, Z. (2013). Disruption and protein release by ultrasonication of yeast cells. Innovative Food Science and Emerging Technologies, 18, 132–137. https://doi.org/10.1016/j.ifset.2013.02.006.

    Article  CAS  Google Scholar 

  31. Clarke, A., Prescott, T., Khan, A., & Olabi, A. G. (2010). Causes of breakage and disruption in a homogeniser. Applied Energy, 87(12), 3680–3690. https://doi.org/10.1016/j.apenergy.2010.05.007.

    Article  CAS  Google Scholar 

  32. Adams, B. G., & Parks, L. W. (1968). Isolation from yeast of a metabolically active water-soluble form of ergosterol. Journal of Lipid Research, 9(1), 8–11.

    CAS  PubMed  Google Scholar 

  33. Bhattacharjee, P., & Singhal, R. S. (2003). Extraction of squalene from yeast by supercritical carbon dioxide. World Journal of Microbiology and Biotechnology, 19(6), 605–608. https://doi.org/10.1023/A:1025146132281.

    Article  CAS  Google Scholar 

  34. Dunstan, G. A., Volkman, J. K., & Barrett, S. M. (1993). The effect of lyophilization on the solvent extraction of lipid classes, fatty acids and sterols from the oyster Crassostrea gigas. Lipids, 28(10), 937–944. https://doi.org/10.1007/BF02537504.

    Article  CAS  Google Scholar 

  35. Ferraz, T. P. L., Fiuza, M. C., Dos Santos, M. L. A., Pontes De Carvalho, L., & Soares, N. M. (2004). Comparison of six methods for the extraction of lipids from serum in terms of effectiveness and protein preservation. Journal of Biochemical and Biophysical Methods, 58(3), 187–193. https://doi.org/10.1016/j.jbbm.2003.10.008.

    Article  CAS  PubMed  Google Scholar 

  36. Park, J. Y., Lee, K., Choi, S. A., Jeong, M. J., Kim, B., Lee, J. S., & Oh, Y. K. (2015). Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renewable Energy, 79(1), 3–8. https://doi.org/10.1016/j.renene.2014.10.001.

    Article  CAS  Google Scholar 

  37. Kawaura, S., Matsuda, N. and, & Kobayashi, N. (1995). Squalene manufacture with Euglena. Japan Kokai Tokkyo Koho, Chem.Abstr. 125, JP 07115981, 8714.

  38. Christie, W. W. (1982). Lipid analysis. New York: Pergamon Press.

    Google Scholar 

  39. Alvarez-Vasquez, F., Riezman, H., Hannun, Y. A., & Voit, E. O. (2011). Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. PLoS One, 6(12), e28344. https://doi.org/10.1371/journal.pone.0028344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sturley, S. L. (2000). Conservation of eukaryotic sterol homeostasis: new insights from studies in budding yeast. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids., 1529(1-3), 155–163. https://doi.org/10.1016/S1388-1981(00)00145-1.

    Article  CAS  Google Scholar 

  41. Westfall, P. J., Pitera, D. J., Lenihan, J. R., Eng, D., Woolard, F. X., Regentin, R., Horning, T., Tsuruta, H., Melis, D. J., Owens, A., Fickes, S., Diola, D., Benjamin, K. R., Keasling, J. D., Leavell, M. D., McPhee, D. J., Renninger, N. S., Newman, J. D., & Paddon, C. J. (2012). From the cover: PNAS plus: production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, 109(3), E111–E118. https://doi.org/10.1073/pnas.1110740109.

    Article  Google Scholar 

  42. Wright, R., Basson, M., D’Ari, L., & Rine, J. (1988). Increased amounts of HMG-CoA reductase induce “karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. Journal of Cell Biology, 107(1), 101–114. https://doi.org/10.1083/jcb.107.1.101.

    Article  CAS  PubMed  Google Scholar 

  43. Klis, F. M., de Koster, C., & Brul, S. (2014). Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryotic Cell, 13(1), 2–9. https://doi.org/10.1128/EC.00250-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghimire, G., Thuan, N., Koirala, N. &, & Sohng, J. (2016). Advances in biochemistry and microbial production of squalene and its derivatives. Journal of Microbiology and Biotechnology, 26(3), 441–451. doi:https://doi.org/10.1175/2010JCLI3177.1.

  45. Spanova, M., Zweytick, D., Lohner, K., Klug, L., Leitner, E., Hermetter, A., & Daum, G. (2012). Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1821(4), 647–653. https://doi.org/10.1016/j.bbalip.2012.01.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KP acknowledges the Department of Biotechnology, India, for the award of research fellowship. SM wishes to acknowledge the financial support provided by the Science Engineering and Research Board (SERB), India. We acknowledge Prof. Ram Rajasekharan (Lipid Science Dept., CSIR-CFTRI) for providing us the strains and the plasmid, pYES2/NTC. The authors are grateful to Mr. K. Anbalagan, CIFS, CFTRI, for his help in SEM analysis and Mr. P. Mukund Lakman, CIFS, CFTRI, for his help during HPLC.

Author information

Authors and Affiliations

Authors

Contributions

SM and KP designed the experiments, KP and KR performed the experiments, and SM and KP analyzed the data.

Corresponding author

Correspondence to Sarma Mutturi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 3032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramasivan, K., Rajagopal, K. & Mutturi, S. Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae. Appl Biochem Biotechnol 187, 691–707 (2019). https://doi.org/10.1007/s12010-018-2845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2845-9

Keywords

Navigation