Skip to main content
Log in

Identification of Antioxidant and Anti-α-amylase Components in Lotus (Nelumbo nucifera, Gaertn.) Seed Epicarp

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lotus seed epicarp, a byproduct of lotus seed production process, is usually discarded as a waste. In this study, antioxidant and anti-α-amylase activities of freeze-dried water and various methanol extracts of lotus seed epicarp were evaluated. The extract obtained by 80% methanol exhibited the strongest DPPH and ABTS radical scavenging activity and ferric reducing power, as well as the greatest inhibitory potential on α-amylase. The excellent antioxidant and α-amylase inhibitory activities of 80% methanol extract might be attributed to its highest concentrations of total phenolics, flavonoids, and condensed tannins. The inhibition kinetic analysis revealed that the 80% methanol extract was a reversible and uncompetitive-type inhibitor of α-amylase. Furthermore, based on MALDI-TOF-MS and thiolysis-HPLC-ESI-MS, the main active components present in 80% methanol extract were identified to be B-type heteropolymeric condensed tannins built up of mixtures of propelargonidins, procyanidins, and prodelphinidins, with the predominance of procyanidins and epicatechin as the main constitutive units. The results obtained suggested that lotus seed epicarp could be exploited as a potential source of natural antioxidants and α-amylase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yanishlieva, N. V., Marinova, E., & Pokorny, J. (2006). Natural antioxidants from herbs and spices. European Journal of Lipid Science and Technology, 108(9), 776–793.

    Article  CAS  Google Scholar 

  2. Mattei, J., Malik, V., Wedick, N. M., Hu, F. B., Spiegelman, D., Willett, W. C., & Campos, H. (2015). Reducing the global burden of type 2 diabetes by improving the quality of staple foods: the global nutrition and epidemiologic transition initiative. Globalization and Health, 11(1), 23.

    Article  Google Scholar 

  3. Shao, Y. F., & Bao, J. S. (2015). Polyphenols in whole rice grain: genetic diversity and health benefits. Food Chemistry, 180, 86–97.

    Article  CAS  Google Scholar 

  4. Tsujita, T., Shintani, T., & Sato, H. (2013). α-Amylase inhibitory activity from nut seed skin polyphenols. 1. Purification and characterization of almond seed skin polyphenols. Journal of Agricultural and Food Chemistry, 61(19), 4570–4576.

    Article  CAS  Google Scholar 

  5. Tarling, C. A., Woods, K., Zhang, R., Brastianos, H. C., Brayer, G. D., Andersen, R. J., & Withers, S. G. (2008). The search for novel human pancreatic α-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. Chembiochem, 9(3), 433–438.

    Article  CAS  Google Scholar 

  6. Sudha, P., Zinjarde, S. S., Bhargava, S. Y., & Kumar, A. R. (2011). Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11, 5.

    Article  Google Scholar 

  7. Ranilla, L. G., Kwon, Y. I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101(12), 4676–4689.

    Article  CAS  Google Scholar 

  8. Li, Q., Chen, J., Li, T., Liu, C. M., Zhai, Y. X., McClements, D. J., & Liu, J. Y. (2015). Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes. Food and Function, 6(12), 3693–3701.

    Article  CAS  Google Scholar 

  9. Saeidnia, S., Ara, L., Hajimehdipoor, H., Read, R. W., Arshadi, S., & Nikan, M. (2016). Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity. Research in Pharmaceutical Sciences, 11(1), 23–32.

    PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y., Wong, A. I. C., Wu, J. E., Karim, N. B. A., & Huang, D. J. (2016). Lepisanthes alata (Malay cherry) leaves are potent inhibitors of starch hydrolases due to proanthocyanidins with high degree of polymerization. Journal of Functional Foods, 25, 568–578.

    Article  CAS  Google Scholar 

  11. Wu, J. Z., Zheng, Y. B., Chen, T. Q., Yi, J., Qin, L. P., Rahman, K., & Lin, W. X. (2007). Evaluation of the quality of lotus seed of Nelumbo nucifera Gaertn from outer space mutation. Food Chemistry, 105(2), 540–547.

    Article  CAS  Google Scholar 

  12. Chen, X., & Zhou, J. (2011). A study on the chemical composition of lotus seed epicarp. Transactions of the Chinese Society for Agricultural Machinery, 29, 139–141.

    Google Scholar 

  13. Kredy, H. M., Huang, D. H., Xie, B. J., He, H., Yang, E. N., Tian, B. Q., & Xiao, D. (2010). Flavonols of lotus (Nelumbo nucifera, Gaertn.) seed epicarp and their antioxidant potential. European Food Research and Technology, 231(3), 387–394.

    Article  CAS  Google Scholar 

  14. Huang, D. H., Hu, C. L., Husam, M. C., Xie, B. J., He, H., & Yang, E. N. (2009). Antioxidant activity and structure of flavonoids from epicarp of Nelumbo nucifera gaertn. Food Science and Technology, 30(23), 209–213.

    Google Scholar 

  15. Chen, S., Fang, L. C., Xi, H. F., Guan, L., Fang, J. B., Liu, Y. L., Wu, B. H., & Li, S. H. (2012). Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Analytica Chimica Acta, 724(8), 127–135.

    Article  CAS  Google Scholar 

  16. Zhou, D. L., Gao, J. H., Yang, H. J., Chen, A. J., & Mai, Z. L. (2011). Analysis on the nutrient components of lotus seed shell and study on the antioxidation activity of flavonoid. Journal of Anhui Agricultural Sciences, 39(7), 3968–3970.

    CAS  Google Scholar 

  17. Liu, Y., Ma, S. S., Ibrahim, S. A., Li, E. H., Yang, H., & Huang, W. (2015). Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chemistry, 185 159–164.

    Article  CAS  Google Scholar 

  18. Qi, S., & Zhou, D. (2013). Lotus seed epicarp extract as potential antioxidant and anti-obesity additive in Chinese Cantonese sausage. Meat Science, 93(2), 257–262.

    Article  CAS  Google Scholar 

  19. Wei, S. D., Lin, Y. M., Liao, M. M., Zhou, H. C., & Li, Y. Y. (2012). Characterization and antioxidative properties of condensed tannins from the mangrove plant Aegiceras corniculatum. Journal of Applied Polymer Science, 124(3), 2463–2472.

    Article  CAS  Google Scholar 

  20. Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321–326.

    Article  CAS  Google Scholar 

  21. Terrill, T. H., Rowan, A. M., Douglas, G. B., & Barry, T. N. (1992). Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture, 58(3), 321–329.

    Article  CAS  Google Scholar 

  22. Wei, S. D., Zhou, H. C., & Lin, Y. M. (2010). Antioxidant activities of extract and fractions from the hypocotyls of the mangrove plant Kandelia candel. International Journal of Molecular Sciences, 11(10), 4080–4093.

    Article  CAS  Google Scholar 

  23. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  24. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.

    Article  CAS  Google Scholar 

  25. Fu, C. L., Yang, X. N., Lai, S. J., Liu, C., Huang, S. R., & Yang, H. S. (2015). Structure, antioxidant and α-amylase inhibitory activities of longan pericarp proanthocyanidins. Journal of Functional Foods, 14, 23–32.

    Article  CAS  Google Scholar 

  26. Li, C. M., Leverence, R., Trombley, J. D., Xu, S., Yang, J., Tian, Y., Reed, J. D., & Hagerman, A. E. (2010). High molecular weight persimmon (Diospyros kaki L.) proanthocyanidin: a highly galloylated, A-linked tannin with an unusual flavonol terminal unit, myricetin. Journal of Agricultural and Food Chemistry, 58(16), 9033–9042.

    Article  CAS  Google Scholar 

  27. Grabber, J. H., Zeller, W. E., & Mueller-Harvey, I. (2013). Acetone enhances the direct analysis of procyanidin- and prodelphinidin-based condensed tannins in lotus species by the butanol-HCl-iron assay. Journal of Agricultural and Food Chemistry, 61(11), 2669–2678.

    Article  CAS  Google Scholar 

  28. Schofield, P., Mbugua, D. M., & Pell, A. N. (2001). Analysis of condensed tannins: a review. Animal Feed Science and Technology, 91(1-2), 21–40.

    Article  CAS  Google Scholar 

  29. Hummer, W., & Schreier, P. (2008). Analysis of proanthocyanidins. Molecular Nutrition and Food Research, 52(12), 1381–1398.

    Article  Google Scholar 

  30. Wolfe, R. M., Terrill, T. H., & Muir, J. P. (2008). Drying method and origin of standard affect condensed tannin (CT) concentrations in perennial herbaceous legumes using simplified butanol-HCl CT analysis. Journal of the Science of Food and Agriculture, 88(6), 1060–1067.

    Article  CAS  Google Scholar 

  31. Singh, P. P., & Chauhan, A. S. M. S. (2009). Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chemistry, 114(3), 1069–1072.

    Article  CAS  Google Scholar 

  32. Inglett, G. E., Chen, D. J., Berhow, M., & Lee, S. Y. (2011). Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chemistry, 125(3), 923–929.

    Article  CAS  Google Scholar 

  33. Tan, K. W., & Kassim, M. J. (2011). A correlation study on the phenolic profiles and corrosion inhibition properties of mangrove tannins (Rhizophora apiculata) as affected by extraction solvent. Corrosion Science, 53(2), 569–574.

    Article  CAS  Google Scholar 

  34. Wei, S. D., Chen, H., Yan, T., Lin, Y. M., & Zhou, H. C. (2014). Identification of antioxidant components and fatty acid profiles of the leaves and fruits from Averrhoa carambola. LWT- Food Science and Technology, 55(1), 278–285.

    Article  CAS  Google Scholar 

  35. Liu, S. C., Lin, J. T., Wang, C. K., Chen, H. Y., & Yang, D. J. (2009). Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chemistry, 114(2), 577–581.

    Article  CAS  Google Scholar 

  36. Wang, Y. F., Huang, S. R., Shao, S. H., Qian, L. S., & Xu, P. (2012). Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: antioxidant activity and inhibitory potential against glucosidase and amylase in vitro. Industrial Crops and Products, 37(1), 520–526.

    Article  CAS  Google Scholar 

  37. Hargrove, J. L., Greenspan, P., Hartle, D. K., & Dowd, C. (2011). Inhibition of aromatase and α-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. Journal of Medicinal Food, 14(7-8), 799–807.

    Article  CAS  Google Scholar 

  38. Reed, J. D., Krueger, C. G., & Vestling, M. M. (2005). MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry, 66(18), 2248–2263.

    Article  CAS  Google Scholar 

  39. Wei, S. D., Zhou, H. C., Lin, Y. M., Liao, M. M., & Chai, W. M. (2010). MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa. Molecules, 15(6), 4369–4381.

    Article  CAS  Google Scholar 

  40. Zhou, H. C., Lin, Y. M., Wei, S. D., & Tam, N. F. Y. (2011). Structural diversity and antioxidant activity of condensed tannins fractionated from mangosteen pericarp. Food Chemistry, 129(4), 1710–1720.

    Article  CAS  Google Scholar 

  41. Song, W., Zhu, X. F., Ding, X. D., Yang, H. B., Qin, S. T., Chen, H., & Wei, S. D. (2017). Structural features, antioxidant and tyrosinase inhibitory activities of proanthocyanidins in leaves of two tea cultivars. International Journal of Food Properties, 20(6), 1348–1358.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31700360), the Hubei Provincial Scientific Research Project in Environmental Protection (2017HB10), the WEL Visiting Fellowship Program of Xiamen University (WEL201706), the Engineering Research Center of Ecology and Agricultural Use of Wetland of Yangtze University (KF201505, KF201704), and the Yangtze Youth Fund of Yangtze University (2015cqn60, 2016cqn41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shudong Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, K., Yang, Z. et al. Identification of Antioxidant and Anti-α-amylase Components in Lotus (Nelumbo nucifera, Gaertn.) Seed Epicarp. Appl Biochem Biotechnol 187, 677–690 (2019). https://doi.org/10.1007/s12010-018-2844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2844-x

Keywords

Navigation