Skip to main content
Log in

Genome Sequencing and Analysis of Strains Bacillus sp. AKBS9 and Acinetobacter sp. AKBS16 for Biosurfactant Production and Bioremediation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial genomics facilitates the analysis of microbial attributes, which can be applied in bioremediation of pollutants and oil recovery process. The biosurfactants derived from microbes can replace the chemical surfactants, which are ecologically detrimental. The aim of this work was to study the genetic organization responsible for biodegradation of aromatics and biosurfactant production in potential microbes isolated from polluted soil. Bacterial isolates were tested for biosurfactant production, wherein Bacillus sp. AKBS9 and Acinetobacter sp. AKBS16 exhibited highest biosurfactant production potential. Whole genome sequencing and annotations revealed the occurrence of sfp and NPRS gene in the Bacillibactin biosynthetic gene cluster in AKBS9 strain and emulsan biosynthetic gene cluster in AKBS16 strain for biosurfactant production. Various aromatic compound ring cleaving oxygenases scavenging organic molecules could be annotated for strain AKBS16 using RAST annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deleu, M., & Paquot, M. (2004). From renewable vegetables resources to microorganisms: New trends in surfactants. Comptes Rendus Chimie, 7(6-7), 641–646.

    Article  CAS  Google Scholar 

  2. Owsianiak, M., Chrzanowski, Ł., Szulc, A., Staniewski, J., Olszanowski, A., Olejnik-Schmidt, A. K., & Heipieper, H. J. (2009). Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresource Technology, 100(3), 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  3. Bezza, F. A., & Chirwa, E. M. N. (2016). Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 144, 635–644.

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Ameneiro, M., Vecino, X., Cruz, J. M., & Moldes, A. B. (2015). Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite. Carbohydrate Polymers, 131, 186–196.

    Article  CAS  PubMed  Google Scholar 

  5. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kapley, A., De Baere, T., & Purohit, H. J. (2007). Eubacterial diversity of activated biomass from a common effluent treatment plant. Research in Microbiology, 158(6), 494–500.

    Article  CAS  PubMed  Google Scholar 

  7. Kapley, A., Prasad, S., & Purohit, H. J. (2007). Changes in microbial diversity in fed-batch reactor operation with wastewater containing nitroaromatic residues. Bioresource Technology, 98(13), 2479–2484.

    Article  CAS  PubMed  Google Scholar 

  8. Kapley, A., & Purohit, H. J. (2009). Diagnosis of treatment efficiency in industrial wastewater treatment plants: A case study at a refinery ETP. Environmental Science & Technology, 43(10), 3789–3795.

    Article  CAS  Google Scholar 

  9. Thangaraj, K., Kapley, A., & Purohit, H. J. (2008). Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds. Bioresource Technology, 99(7), 2488–2494.

    Article  CAS  PubMed  Google Scholar 

  10. Kapley, A., Liu, R., Jadeja, N. B., Zhang, Y., Yang, M., & Purohit, H. J. (2015). Shifts in microbial community and its correlation with degradative efficiency in a wastewater treatment plant. Applied Biochemistry and Biotechnology, 176(8), 2131–2143.

    Article  CAS  PubMed  Google Scholar 

  11. Nwaguma, I. V., Chikere, C. B., & Okpokwasili, G. C. (2016). Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresources and Bioprocessing, 3(1), 40.

    Article  Google Scholar 

  12. Shoeb, E., Ahmed, N., Akhter, J., Badar, U., Siddiqui, K., Ansari, F., Waqar, M., Imtiaz, S., Akhtar, N., Shaikh, Q. U. A., & BAIG, R. (2015). Screening and characterization of biosurfactant-producing bacteria isolated from the Arabian Sea coast of Karachi. Turkish Journal of Biology, 39, 210–216.

    Article  CAS  Google Scholar 

  13. Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., & Imanaka, T. (1993). A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology, 175(20), 6459–6466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., & Vonstein, V. (2013). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42, 206–214.

    Article  CAS  Google Scholar 

  15. Darzentas, N. (2010). Circoletto: Visualizing sequence similarity with Circos. Bioinformatics, 26(20), 26202621.

    Article  CAS  PubMed  Google Scholar 

  16. Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 44(14), 6614–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Müller, R., Wohlleben, W., & Breitling, R. (2015). antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43, 237–243.

    Article  CAS  Google Scholar 

  18. Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaligram, S., Kumbhare, S. V., Dhotre, D. P., Muddeshwar, M. G., Kapley, A., Joseph, N., Purohit, H. P., Shouche, Y. S., & Pawar, S. P. (2016). Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Functional & Integrative Genomics, 16(5), 557–566.

    Article  CAS  Google Scholar 

  20. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., & Borriss, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186(4), 1084–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bach, H., Berdichevsky, Y., & Gutnick, D. (2003). An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Applied and Environmental Microbiology, 69(5), 2608–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakar, D., & Gutnick, D. L. (2001). Analysis of the wee gene cluster responsible for the biosynthesis of the polymeric bioemulsifier from the oil-degrading strain Acinetobacter lwoffii RAG-1. Microbiology, 147(7), 1937–1946.

    Article  CAS  PubMed  Google Scholar 

  23. Bhardwaj, P., Sharma, A., Sagarkar, S., & Kapley, A. (2015). Mapping atrazine and phenol degradation genes in Pseudomonas sp. EGD-AKN5. Biochemical Engineering Journal, 102, 125–134.

    Article  CAS  Google Scholar 

  24. Fondi, M., Maida, I., Perrin, E., Orlandini, V., La Torre, L., Bosi, E., Negroni, A., Zanaroli, G., Fava, F., Decorosi, F., & Giovannetti, L. (2016). Genomic and phenotypic characterization of the species Acinetobacter venetianus. Scientific Reports, 6(1), 21985.

  25. Gu, Q., Wu, Q., Zhang, J., Guo, W., Wu, H., & Sun, M. (2017). Acinetobacter sp. DW-1 immobilized on polyhedron hollow polypropylene balls and analysis of transcriptome and proteome of the bacterium during phenol biodegradation process. Scientific Reports, 7, 4863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudrashetti, A. P., Jadeja, N. B., Gandhi, D., Juwarkar, A. A., Sharma, A., Kapley, A., & Pandey, R. A. (2017). Microbial population shift caused by sulfamethoxazole in engineered-Soil Aquifer Treatment (e-SAT) system. World Journal of Microbiology and Biotechnology, 33(6), 121.

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee, A., Chettri, B., Langpoklakpam, J. S., Basak, P., Prasad, A., Mukherjee, A. K., Bhattacharyya, M., Singh, A. K., & Chattopadhyay, D. (2017). Bio informatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Scientific Reports, 7(1), 1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Council of Scientific and Industrial Research, India, CSIR-network project ESC-0108-MESER, for supporting this research. Niti B Jadeja (SRF) is grateful to the CSIR. We are also grateful to Director, CSIR-NEERI, Nagpur, for the support. The manuscript has been checked for plagiarism using iThenticate Software under assigned KRC No.: CSIR-NEERI/KRC/2018/JAN/DRC/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atya Kapley.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Table 1

Results of confirmatory tests for Biosurfactant production in strains AKBS9 and AKBS16. (DOCX 12 kb)

Supplementary Figure 1

In-silico steps involved in the analysis of AKBS9 and AKBS16 draft genomes. (PNG 171 kb)

High Resolution (TIF 677 kb)

Supplementary Figure 2

Graphical representation of gene ontologies for draft genome assemblies a) AKBS9 and b) AKBS16. (PNG 820 kb)

(PNG 1019 kb)

High Resolution (TIF 3010 kb)

High Resolution (TIF 3457 kb)

Supplementary Figure 3

Circos plot of AKBS9 and closest reference match Bacillus cereusb) Circos plot of AKBS16 with closest reference match Acinetobacter pittii. (PNG 4396 kb)

(PNG 4851 kb)

High Resolution (TIF 6295 kb)

High Resolution (TIF 7273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadeja, N.B., Moharir, P. & Kapley, A. Genome Sequencing and Analysis of Strains Bacillus sp. AKBS9 and Acinetobacter sp. AKBS16 for Biosurfactant Production and Bioremediation. Appl Biochem Biotechnol 187, 518–530 (2019). https://doi.org/10.1007/s12010-018-2828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2828-x

Keywords

Navigation