Skip to main content
Log in

Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu2+-Cysteine Using a Metal Ion Displacement and Cu2+-Arginine Through the Host-Guest Interaction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the current study, we reported a novel label-free and facile colorimetric approach for the sequential detection of copper ion (Cu2+), l-arginine (Arg), and l-cysteine (Cys) in the H2O (10.0 mmol L−1 HEPES buffer solution, pH 7.0) using Reactive Blue 4 (RB4). First, the presence of Cu2+ led to a naked-eye color and spectral changes according to the binding site-signaling subunit approach. Then, the RB4-Cu2+ complex was successfully applied for Cys and Arg through different recognition pathways. The optical signals for Arg were observed due to its association involving the amino group, as well as the participation of the carboxylate group in a bidentate form to the complex, while selective behavior for Cys was explained by a metal displacement mechanism. The limits of detection for Cu2+, Arg, and Cys were calculated to be 1.96, 1.06, and 1.33 μmol L−1, respectively. It could also be employed for the determination of three analytes in environmental, biological, and pharmaceutical samples. Importantly, the test strips based on RB4-Cu2+ complex could be used as a solid-state sensor for the detection of Cys and Arg. In addition, NAND and IMPLICATION molecular logic gates were obtained by using chemical inputs and UV-Vis absorbance signal as the output.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steed, J. W. (2009). Coordination and organometallic compounds as anion receptors and sensors. Chemical Society Reviews, 38, 506–519.

    Article  CAS  PubMed  Google Scholar 

  2. Gruber, B., Stadlbauer, S., Spath, A., Weiss, S., Kalinina, M., & Konig, B. (2010). Modular chemosensors from self-assembled vesicle membranes with amphiphilic binding sites and reporter dyes. Angewandte Chemie International Edition, 49, 7125–7128.

    Article  CAS  PubMed  Google Scholar 

  3. Li, S.-H., Yu, C.-W., & Xu, J.-G. (2005). A cyclometalated palladium-azo complex as a differential chromogenic probe for amino acids in aqueous solution. Chemical Communications, 4, 450–452.

    Article  Google Scholar 

  4. Li, G., Chen, Y., Wu, J., Ji, L., & Chao, H. (2013). Thiol-specific phosphorescent imaging in living cells with an azobis(2,2[prime or minute]-bipyridine)-bridged dinuclear iridium(iii) complex. Chemical Communications, 49, 2040–2042.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez-Moreira, V., Thorp-Greenwood, F. L., & Coogan, M. P. (2010). Application of d6 transition metal complexes in fluorescence cell imaging. Chemical Communications, 46, 186–202.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta, V. K., Mergu, N., Kumawat, L. K., & Singh, A. K. (2015). Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe. Sensors and Actuators B: Chemical, 207, 216–223.

    Article  CAS  Google Scholar 

  7. Gupta, V. K., Singh, A. K., & Kumawat, L. K. (2014). Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensors and Actuators B: Chemical, 195, 98–108.

    Article  CAS  Google Scholar 

  8. Wang, J., Liu, H.-B., Tong, Z., & Ha, C.-S. (2015). Fluorescent/luminescent detection of natural amino acids by organometallic systems. Coordination Chemistry Reviews, 303, 139–184.

    Article  CAS  Google Scholar 

  9. Jang, Y. K., Nam, U. C., Kwon, H. L., Hwang, I. H., & Kim, C. (2013). A selective colorimetric and fluorescent chemosensor based-on naphthol for detection of Al3+ and Cu2+. Dyes and Pigments, 99, 6–13.

    Article  CAS  Google Scholar 

  10. Xu, X., Zhang, N., Brown, G. M., Thundat, T. G., & Ji, H. F. (2017). Ultrasensitive detection of cu(2+) using a micro cantilever sensor modified with L-cysteine self-assembled monolayer. Applied Biochemistry and Biotechnology, 183(2), 555–565.

    Article  CAS  PubMed  Google Scholar 

  11. Fu, Y., Feng, Q.-C., Jiang, X.-J., Xu, H., Li, M., & Zang, S.-Q. (2014). New fluorescent sensor for Cu2+ and S2− in 100% aqueous solution based on displacement approach. Dalton Transactions, 43(15), 5815–5822.

    Article  CAS  PubMed  Google Scholar 

  12. Li, M., Jiang, X.-J., Wu, H.-H., Lu, H.-L., Li, H.-Y., Xu, H., Zang, S.-Q., & Mak, T. C. W. (2015). A dual functional probe for "turn-on" fluorescence response of Pb2+ and colorimetric detection of Cu2+ based on a rhodamine derivative in aqueous media. Dalton Transactions, 44(39), 17326–17334.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta, V. K., Ganjali, M. R., Norouzi, P., Khani, H., Nayak, A., & Agarwal, S. (2011). Electrochemical analysis of some toxic metals by ion-selective electrodes. Critical Reviews in Analytical Chemistry, 41(4), 282–313.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta, V. K., Singh, L. P., Singh, R., Upadhyay, N., Kaur, S. P., & Sethi, B. (2012). A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. Journal of Molecular Liquids, 174, 11–16.

    Article  CAS  Google Scholar 

  15. Dudev, T., & Lim, C. (2008). Metal binding affinity and selectivity in metalloproteins: Insights from computational studies. Annual Review of Biophysics, 37, 97–116.

    Article  CAS  PubMed  Google Scholar 

  16. Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R. K., Kim, B. S., Bapat, V. A., & Patil, S. V. (2015). Bio-functionalized silver nanoparticles: A novel colorimetric probe for cysteine detection. Applied Biochemistry and Biotechnology, 175(7), 3479–3493.

    Article  CAS  PubMed  Google Scholar 

  17. Yin, C., Huo, F., Zhang, J., Martinez-Manez, R., Yang, Y., Lv, H., & Li, S. (2013). Thiol-addition reactions and their applications in thiol recognition. Chemical Society Reviews, 42, 6032–6059.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chemical Society Reviews, 41, 52–67.

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y., Sun, M., Zhang, K., Zhang, Y., Yan, Y., Lei, K., Wu, L., Yu, H., & Wang, S. (2017). A near-infrared fluorescent probe for Cu2+ in living cells based on coordination effect. Sensors and Actuators B: Chemical, 243, 36–42.

    Article  CAS  Google Scholar 

  20. Jiang, H., Li, Z., Kang, Y., Ding, L., Qiao, S., Jia, S., Luo, W., & Liu, W. (2017). A two-photon fluorescent probe for Cu2+ based on dansyl moiety and its application in bioimaging. Sensors and Actuators B: Chemical, 242, 112–117.

    Article  CAS  Google Scholar 

  21. Huang, J., Liu, M., Ma, X., Dong, Q., Ye, B., Wang, W., & Zeng, W. (2014). A highly selective turn-off fluorescent probe for Cu(ii) based on a dansyl derivative and its application in living cell imaging. RSC Advances, 4(44), 22964–22970.

    Article  CAS  Google Scholar 

  22. Li, Q., Guo, Y., & Shao, S. (2012). A BODIPY based fluorescent chemosensor for Cu(II) ions and homocysteine/cysteine. Sensors and Actuators B: Chemical, 171-172, 872–877.

    Article  CAS  Google Scholar 

  23. Wang, L., Du, J., & Cao, D. (2014). A colorimetric fluorescent chemodosimeter based on diketopyrrolopyrrole and 1,3-indanedione for cysteine detection and cellular imaging in living cells. Sensors and Actuators B: Chemical, 205, 281–288.

    Article  CAS  Google Scholar 

  24. Lin, Q., Huang, Y., Fan, J., Wang, R., & Fu, N. (2013). A squaraine and Hg2+-based colorimetric and “turn on” fluorescent probe for cysteine. Talanta, 114, 66–72.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S., & Huang, D. (2018). Selective detection and quantification of tryptophan and cysteine with pyrenedione as a turn-on fluorescent probe. Sensors and Actuators B: Chemical, 259, 768–774.

    Article  CAS  Google Scholar 

  26. Shang, X., Du, J., Yang, W., Liu, Y., Fu, Z., Wei, X., Yan, R., Yao, N., Guo, Y., Zhang, J., & Xu, X. (2014). The development and amino acid binding ability of nano-materials based on azo derivatives: Theory and experiment. Materials Science and Engineering: C, 38, 101–106.

    Article  CAS  Google Scholar 

  27. Jain, R., Gupta, V. K., Jadon, N., & Radhapyari, K. (2010). Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Analytical Biochemistry: Methods in the Biological Sciences, 407, 79–88.

    Article  CAS  Google Scholar 

  28. Gupta, V. K., Nayak, A., Agarwal, S., & Singhal, B. (2011). Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Combinatorial Chemistry & High Throughput Screening, 14(4), 284–302.

    Article  CAS  Google Scholar 

  29. Gupta, V. K., Kumar, S., Singh, R., Singh, L. P., Shoora, S. K., & Sethi, B. (2014). Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. Journal of Molecular Liquids, 195, 65–68.

    Article  CAS  Google Scholar 

  30. Xu, M., Rao, Z., Xu, H., Lan, C., Dou, W., Zhang, X., Xu, H., Jin, J., & Xu, Z. (2011). Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 163(6), 707–719.

    Article  CAS  PubMed  Google Scholar 

  31. Touhami, N., Buhl, K., Schmidt-Heydt, M., & Geisen, R. (2016). Arginine acts as an inhibitor of the biosynthesis of several mycotoxins. International Journal of Food Microbiology, 235, 46–52.

    Article  CAS  PubMed  Google Scholar 

  32. El-Sadek, A. E., Behery, E. G., Azab, A. A., Kamal, N. M., Salama, M. A., Abdulghany, W. E., & Abdallah, E. A. (2016). Arginine dimethylation products in pediatric patients with chronic kidney disease. Annals of Medicine and Surgery, 9, 22–27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stasyuk, N., Gayda, G., Yepremyan, H., Stepien, A., & Gonchar, M. (2017). Fluorometric enzymatic assay of l-arginine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 170, 184–190.

    Article  CAS  Google Scholar 

  34. Chen, X., Lv, Y., Zhang, Y., Zhao, J., & Sun, L. (2016). A simple but efficient electrochemical method to assay protein arginine deiminase 4. Sensors and Actuators B: Chemical, 227, 43–47.

    Article  CAS  Google Scholar 

  35. Hroch, M., Havlínová, Z., Nobilis, M., & Chládek, J. (2012). HPLC determination of arginases inhibitor N-(ω)-hydroxy-nor-l-arginine using core–shell particle column and LC–MS/MS identification of principal metabolite in rat plasma. Journal of Chromatography B, 880, 90–99.

    Article  CAS  Google Scholar 

  36. Xie, C., Xu, N., Shao, Y., & He, Y. (2015). Using FT-NIR spectroscopy technique to determine arginine content infermented Cordyceps sinensis mycelium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 971–977.

    Article  CAS  Google Scholar 

  37. Shahida Parveen, S. D., Affrose, A., & Pitchumani, K. (2015). Plumbagin as colorimetric and ratiometric sensor for arginine. Sensors and Actuators B: Chemical, 221, 521–527.

    Article  CAS  Google Scholar 

  38. Bhosale, R. S., Shitre, G. V., Kumar, R., Biradar, D. O., Bhosale, S. V., Narayan, R., & Bhosale, S. V. (2017). A 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) based colorimetric and green turn-on fluorescent sensor for the detection of arginine and lysine in aqueous solution. Sensors and Actuators B: Chemical, 241, 1270–1275.

    Article  CAS  Google Scholar 

  39. Rawat, K. A., & Kailasa, S. K. (2016). 4-Amino nicotinic acid mediated synthesis of gold nanoparticles for visual detection of arginine, histidine, methionine and tryptophan. Sensors and Actuators B: Chemical, 222, 780–789.

    Article  CAS  Google Scholar 

  40. Zhang, Z., Wei, T., Chen, Y., Chen, T., Chi, B., Wang, F., & Chen, X. (2018). A polydiacetylenes-based colorimetric and fluorescent probe for l-arginine and l-lysine and its application for logic gate. Sensors and Actuators B: Chemical, 255, 2211–2217.

    Article  CAS  Google Scholar 

  41. Jiang, X. J., Li, M., Lu, H. L., Xu, L. H., Xu, H., Zang, S. Q., Tang, M. S., Hou, H. W., & Mak, T. C. (2014). A highly sensitive C3-symmetric Schiff-base fluorescent probe for Cd2+. Inorganic Chemistry, 53(24), 12665–12667.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, X.-J., Fu, Y., Tang, H., Zang, S.-Q., Hou, H.-W., Mak, T. C. W., & Zhang, H.-Y. (2014). A new highly selective fluorescent sensor for detection of Cd2+ and Hg2+ based on two different approaches in aqueous solution. Sensors and Actuators B: Chemical, 190, 844–850.

    Article  CAS  Google Scholar 

  43. Dai, X., Du, Z. F., Wang, L. H., Miao, J. Y., & Zhao, B. X. (2016). A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells. Analytica Chimica Acta, 922, 64–70.

    Article  CAS  PubMed  Google Scholar 

  44. Nasirizadeh, N., Shekari, Z., Tabatabaee, M., & Ghaani, M. (2015). Simultaneous determination of ascorbic acid, L-Dopa, uric acid, insulin, and acetylsalicylic acid on Reactive Blue 19 and multi-wall carbon nanotube modified glassy carbon electrode. Journal of the Brazilian Chemical Society, 26, 713–722.

    CAS  Google Scholar 

  45. Nasirizadeh, N., Shekari, Z., Nazari, A., & Tabatabaee, M. (2016). Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples. Journal of Food and Drug Analysis, 24, 72–82.

    Article  CAS  PubMed  Google Scholar 

  46. Tavallali, H., Deilamy-Rad, G., Parhami, A., & Kiyani, S. (2014). Dithizone as novel and efficient chromogenic probe for cyanide detection in aqueous media through nucleophilic addition into diazenylthione moiety. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 139–146.

    Article  CAS  Google Scholar 

  47. National standard of the People’s Republic of China. National food safety standards of food additives-L-arginine (2012).

  48. Maleki, N., Haghighi, B., & Safavi, A. (1999). Evaluation of formation constants, molar Absorptivities of metal complexes, and protonation constants of acids by nonlinear curve fitting using Microsoft excel solver and user-defined function. Microchemical Journal, 62, 229–236.

    Article  CAS  Google Scholar 

  49. Benesi, H. A., & Hildebrand, J. H. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71, 2703–2707.

    Article  CAS  Google Scholar 

  50. Berthon, G. (1995). Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (technical report). Pure and Applied Chemistry, 67, 1117–1240.

    Article  CAS  Google Scholar 

  51. Petrovic, M. B., Radovanovic, M. B., Simonovic, A. T., & Milic, S. M. (2012). The effect of cysteine on the behaviour of copper in neutral and alkaline sulphate solutions. International Journal of Electrochemical Science, 7, 9043–9057.

    CAS  Google Scholar 

  52. Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno, B. E., & McIntosh, L. P. (2015). Arginine: Its pKa value revisited. Protein Science, 24, 752–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuen, C., Ku, S., & Choi, P. (2005). Determining functional groups of commercially available ink-jet printing reactive dyes using infrared spectroscopy. Research Journal of Textile and Apparel, 9, 26–38.

    Article  Google Scholar 

  54. Tang, X.-L., Dou, W., Chen, S.-W., Dang, F.-F., & Liu, W.-S. (2007). Synthesis, infrared and fluorescence spectra of lanthanide complexes with a new amide-based 1,3,4-oxadiazole derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68, 349–353.

    Article  CAS  Google Scholar 

  55. Melnikov, P., Corbi, P. P., Diaz Aguila, C., Zacharias, M. A., Cavicchioli, M. C., & Massabni, A. C. (2000). Iron(II) djenkolate: synthesis and properties. Journal of Alloys and Compounds, 307, 179–183.

    Article  CAS  Google Scholar 

  56. Kumar, S., & Rai, S. B. (2010). Spectroscopic studies of L-arginine molecule. Indian Journal of Pure & Applied Physics, 48, 251–255.

    CAS  Google Scholar 

  57. de Farias, R. F., Martínez, L., & Airoldi, C. (2002). A calorimetric investigation into copper–arginine and copper–alanine solid state interactions. Transition Metal Chemistry, 27, 253–255.

    Article  Google Scholar 

  58. Feng, L., Lyu, Z., Offenhausser, A., & Mayer, D. (2015). Multi-level logic gate operation based on amplified aptasensor performance. Angewandte Chemie International Edition, 54, 7693–7697.

    Article  CAS  PubMed  Google Scholar 

  59. Angelos, S., Yang, Y. W., Khashab, N. M., Stoddart, J. F., & Zink, J. I. (2009). Dual-controlled nanoparticles exhibiting AND logic. Journal of the American Chemical Society, 131, 11344–11346.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, T. K. (2015). T test as a parametric statistic. Korean Journal of Anesthesiology, 68, 540–546.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ou, X.-x., Jin, Y.-l., Chen, X.-q., Gong, C.-b., Ma, X.-b., Wang, Y.-s., Chow, C.-f., & Tang, Q. (2015). Colorimetric test paper for cyanide ion determination in real-time. Analytical Methods, 7, 5239–5244.

    Article  Google Scholar 

  62. Gupta, V. K., Mergu, N., Kumawat, L. K., & Singh, A. K. (2015). A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta, 144, 80–89.

    Article  CAS  Google Scholar 

  63. Ding, H., Li, B., Pu, S., Liu, G., Jia, D., & Zhou, Y. (2017). A fluorescent sensor based on a diarylethene-rhodamine derivative for sequentially detecting Cu2+ and arginine and its application in keypad lock. Sensors and Actuators B: Chemical, 247, 26–35.

    Article  CAS  Google Scholar 

  64. He, L., So, V. L. L., & Xin, J. H. (2014). A new rhodamine-thiourea/Al3+ complex sensor for the fast visual detection of arginine in aqueous media. Sensors and Actuators B: Chemical, 192, 496–502.

    Article  CAS  Google Scholar 

  65. Xue, Z., Wang, X., Rao, H., Liu, X., & Lu, X. (2017). A colorimetric sensor of cysteine based on self-assembly nanostructures of Fe3+-H2O2/Tetramethylbenzidine system with “on-off” switching function. Analytical Biochemistry, 534, 1–9.

    Article  CAS  PubMed  Google Scholar 

  66. Xue, Z., Fu, X., Rao, H., Hassan Ibrahim, M., Xiong, L., Liu, X., & Lu, X. (2017). A colorimetric indicator-displacement assay for cysteine sensing based on a molecule-exchange mechanism. Talanta, 174, 667–672.

    Article  CAS  PubMed  Google Scholar 

  67. Lee, S. A., Lee, J. J., Shin, J. W., Min, K. S., & Kim, C. (2015). A colorimetric chemosensor for the sequential detection of copper(II) and cysteine. Dyes and Pigments, 116, 131–138.

    Article  CAS  Google Scholar 

  68. You, G. R., Lee, J. J., Choi, Y. W., Lee, S. Y., & Kim, C. (2016). Experimental and theoretical studies for sequential detection of copper(II) and cysteine by a colorimetric chemosensor. Tetrahedron, 72, 875–881.

    Article  CAS  Google Scholar 

  69. Wei, X., Qi, L., Tan, J., Liu, R., & Wang, F. (2010). A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Analytica Chimica Acta, 671, 80–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of this work by Payame Noor University Research Council (Shiraz, Iran).

Author information

Authors and Affiliations

Authors

Contributions

Hossein Tavallali designed the research, analyzed the data, and wrote the manuscript. Gohar Deilamy – Rad and Narges Mosallanejad analyzed the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hossein Tavallali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavallali, H., Deilamy-Rad, G. & Mosallanejad, N. Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu2+-Cysteine Using a Metal Ion Displacement and Cu2+-Arginine Through the Host-Guest Interaction. Appl Biochem Biotechnol 187, 913–937 (2019). https://doi.org/10.1007/s12010-018-2796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2796-1

Keywords

Navigation