Skip to main content
Log in

Enhancement of Tryptic Digestibility of Milk β-Lactoglobulin Through Treatment with Recombinant Rice Glutathione/Thioredoxin and NADPH Thioredoxin Reductase/Thioredoxin Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-Lactoglobulin (BLG), a member of lipocalin family, is one of the major bovine milk allergens. This protein exists as a dimer of two identical subunits and contains two intramolecular disulfide bonds that are responsible for its resistance to trypsin digestion and allergenicity. This study aimed to evaluate the effect of reduction of disulfide bonds of BLG with different rice thioredoxins (Trxs) on its digestibility and allergenicity. Therefore, the active recombinant forms of three rice Trx isoforms (OsTrx1, OsTrx20, and OsTrx23) and one rice NADPH-dependent Trx reductase isoform (OsNTRB) were expressed in Escherichia coli. Based on SDS-PAGE, HPLC analysis, and competitive ELISA, the reduction of disulfide bonds of BLG with OsNTRB/OsTrx23, OsNTRB/OsTrx1, GSH/OsTrx1, or GSH/OsTrx20 increased its trypsin digestibility and reduced its immunoreactivity. The finding of this study opens new insights for application of plant Trxs in the improvement of food protein digestibility. Especially, the use of OsTrx20 and OsTrx1 are more cost-effective than E. coli and animal Trxs due to their reduction by GSH and no need to NADPH and Trx reductase as mediator enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sampson, H. (2004). Update on food allergy. Journal of Allergy and Clinical Immunology, 113(5), 805–819.

    Article  CAS  PubMed  Google Scholar 

  2. Rytkonen, J. (2006). Effect of heat denaturation of bovine milk betalactoglobulin on its epithelial transport and allergenicity. Acta Universitatis Ouluensis Series D, 883, 17–18.

    Google Scholar 

  3. Saarinen, K. M., Juntunen-Backman, K., Järvenpää, A. L., Kuitunen, P., Lope, L., Renlund, M., Siivola, M., & Savilahti, E. (1999). Supplementary feeding in maternity hospitals and the risk of cow’s milk allergy: a prospective study of 6209 infants. Journal of Allergy and Clinical Immunology, 104(2), 457–461.

    Article  CAS  PubMed  Google Scholar 

  4. Docena, G. H., Fernandez, R., Chirdo, F. G., & Fossati, C. A. (1996). Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy, 51(6), 412–416.

    Article  CAS  PubMed  Google Scholar 

  5. Savilahti, E., & Kuitunen, M. (1992). Allergenicity of cow milk proteins. Journal of Pediatrics, 121(5), S12–S20.

    Article  CAS  PubMed  Google Scholar 

  6. Perez, M. D., & Calvo, M. (1995). Interaction of B-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein. Journal of Dairy Science, 78(5), 978–988.

    Article  CAS  PubMed  Google Scholar 

  7. Flower, D. R. (1996). The lipocalin protein family: structure and function. Biochemical Journal, 318(1), 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fogolari, F., Ragona, L., Zetta, L., Romagnoli, S., De Kruif, K. G., & Molinari, H. (1998). Monomeric bovine beta-lactoglobulin adopts a beta barrel fold at pH 2. FEBS Letters., 436(2), 149–154.

    Article  CAS  PubMed  Google Scholar 

  9. Hambling, S. G., McAlpine, A. S., Sawyer, L., & Fox, P. (1992). β-Lactoglobulin. Adv. Dairy Chemistry. 1 Protein 2, 141–190.

  10. Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2016). Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear. Food Chemistry, 217, 517–523.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong, J., Luo, S. H., Liu, C. H., & Liu, W. (2014). Steady-state kinetics of tryptic hydrolysis of β-lactoglobulin after dynamic high-pressure microfluidization treatment in relation to antigenicity. Journal European Food Research and Technology, 239(3), 525–531.

    Article  CAS  Google Scholar 

  12. Lowe, E. K., Anema, S. G., Bienvenue, A., Boland, M. J., Creamer, L. K., & Jiménez-Flores, R. (2004). Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-Lactoglobulin and κ-casein. Journal of Agriculture and Food Chemistry, 52(25), 7669–7680.

    Article  CAS  Google Scholar 

  13. Zhao, D., T Le, T., Nielsen, S. D., & Larsen, L. B. (2017). Effect of storage on lactase-treated B-casein and B-lactoglobulin with respect to bitter peptide formation and subsequent in vitro digestibility. Journal of Agricultural and Food Chemistry, 65(38), 8409–8417.

    Article  CAS  PubMed  Google Scholar 

  14. Del Val, G., Buchanan, B. B., Yee, B. C., Lozano, R. M., Ermel, R. W., & Frick, O. L. (1997). Production of hypoallergenic, hyperdigestible milk by a new biotechnology. In: XVI International Congress of Allergology and Clinical Immunology, (p. 26).

  15. Del Val, G., Yee, B. C., Lozano, R. M., Buchanan, B. B., Ermel, R. W., Lee, Y. M., & Frick, O. L. (1999). Thioredoxin treatment increases digestibility and lowers allergenicity of milk. Journal of Allergy and Clinical Immunology, 103(4), 690–697.

    Article  PubMed  Google Scholar 

  16. Gelhaye, E., Rouhier, N., & Jacquot, J. P. (2004). The thioredoxin h system of higher plants. Plant Physiology and Biochemistry, 42(4), 265–271.

    Article  CAS  PubMed  Google Scholar 

  17. Meyer, Y., Siala, W., Bashandy, T., Riondet, C., Vignols, F., & Reichheld, J. P. (2008). Glutaredoxins and thioredoxins in plants. Biochimica et Biophysica Acta, 1783(4), 589–600.

    Article  CAS  PubMed  Google Scholar 

  18. Reichheld, J. P., Meyer, E., Khafif, M., Bonnard, G., & Meyer, Y. (2005). AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Letters, 579(2), 337–342.

    Article  CAS  PubMed  Google Scholar 

  19. Bréhélin, C., Laloi, C., Setterdahl, A. T., Knaff, D. B., & Meyer, Y. (2004). Cytosolic, mitochondrial thioredoxins and thioredoxin reductases in Arabidopsis Thaliana. Photosynthesis Research, 79(3), 295–304.

    Article  PubMed  Google Scholar 

  20. Meyer, Y., Vignols, F., & Reichheld, J. P. (2002). Classification of plant thioredoxins by sequence similarity and intron position. Methods in Enzymology, 347, 394–402.

    Article  CAS  PubMed  Google Scholar 

  21. Nuruzzaman, M., Gupta, M., Zhang, C., Wang, L., Xie, W., Xiong, L., Zhang, Q., & Lian, X. (2008). Sequence and expression analysis of the thioredoxin protein gene family in rice. Molecular Genetics and Genomics, 280(2), 139–151.

    Article  CAS  PubMed  Google Scholar 

  22. Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C., & Cejudo, F. J. (2004). A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. Journal of Biological Chemistry, 279(42), 43821–43827.

    Article  CAS  PubMed  Google Scholar 

  23. Papzan, Z., & Shahpiri, A. (2012). Cloning, heterologous expression and characterization of three thioredoxin h isoforms (OsTrx1, OsTrx20 and OsTrx23) from rice. Plant Omics, 5, 238–243.

    CAS  Google Scholar 

  24. Eslampanah, H., & Shahpiri, A. (2012). Molecular cloning and characterization of two isoforms of cytoplasmic/mitochondrial type NADPH-dependent thioredoxin reductase from rice (‘Oryza sativa’ L. ssp. ‘indica’). Australian Journal of Crop Science, 6, 1045–1050.

    CAS  Google Scholar 

  25. Shaykholeslam Esfahani, E., & Shahpiri, A. (2015). Thioredoxin h isoforms from rice are differentially reduced by NADPH/thioredoxin or GSH/glutaredoxin systems. International Journal of Biological Macromolecules, 74, 243–248.

    Article  CAS  PubMed  Google Scholar 

  26. Ellman, G. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.

    Article  CAS  PubMed  Google Scholar 

  27. Chibani, K., Wingsle, G., Jacquot, J.-P., Gelhaye, E., & Rouhier, N. (2011). Biochemical properties of poplar thioredoxin z. FEBS Letters, 34569, 1–6.

    Google Scholar 

  28. Gelhaye, E., Rouhier, N., Gérard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P. I., Wingsle, G., Hirasawa, M., & Knaff, D. B. (2004). A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. PNAS, 101(40), 14545–14550.

    Article  CAS  PubMed  Google Scholar 

  29. Buchanan, B. B., & Balmer, Y. (2005). Redox regulation: a broading horizon. Annual Review of Plant Biology, 56(1), 187–220.

    Article  CAS  PubMed  Google Scholar 

  30. Faris, R. J., Wang, H., & Wang, T. (2008). Improving digestibility of soy flour by reducing disulfide bonds with thioredoxin. Journal of Agricultural and Food Chemistry, 56(16), 7146–7150.

    Article  CAS  PubMed  Google Scholar 

  31. Niemi, M., Jylhä, S., Laukkanen, M. L., Söderlund, H., Kiljunen, S. M., Kallio, J. M., Hakulinen, N., Haahtela, T., Takkinen, K., & Rouvinen, J. (2007). Molecular interaction between a recombinant IgE antibody and the ß-lactoglobulin allergen. Structure, 15(11), 1413–1421.

    Article  CAS  PubMed  Google Scholar 

  32. Fuquay, J. W., Fox, P. F., & McSweeney, P. L. (2011). Encyclopedia of Dairy Sciences (2nd ed.). Cambridge: Academic.

    Google Scholar 

  33. Stanley, J., & Bannon, G. (1999). Biochemistry of food allergens. Clinical Reviews in Allergy & Immunology, 17, 279–291.

    Article  CAS  Google Scholar 

  34. Song, C. Y., Chen, W. L., Yang, M. C., Huang, J. P., & Mao, S. J. (2005). Epitope mapping of a monoclonal antibody specific to bovine dry milk: involvement of residues 66–76 of strand D in thermal denatured beta-lactoglobulin. Journal of Biology and Chemistry, 280(5), 3574–3582.

    Article  CAS  Google Scholar 

  35. Takagi, K., Teshima, R., Okunuki, H., & Sawada, J. (2003). Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biological and Pharmaceutical Bulletin, 26(7), 969–973.

    Article  CAS  PubMed  Google Scholar 

  36. Peram, M. R., Loveday, S. M., & Ye, A. (2013). In vitro gastric digestion of heat-induced aggregates of β-lactoglobulin. Journal of Dairy Science, 96(1), 63–74.

    Article  CAS  PubMed  Google Scholar 

  37. Buchanan, B. B., Adamidi, C., Lozano, R. M., Yee, B. C., Momma, M., Kobrehel, K., Ermel, R., & Frick, O. L. (1997). Thioredoxin-linked mitigation of allergic responses to wheat. Production National Academy of Science, 94(10), 5372–7377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azar Shahpiri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriari-Farfani, T., Shahpiri, A. & Taheri-Kafrani, A. Enhancement of Tryptic Digestibility of Milk β-Lactoglobulin Through Treatment with Recombinant Rice Glutathione/Thioredoxin and NADPH Thioredoxin Reductase/Thioredoxin Systems. Appl Biochem Biotechnol 187, 649–661 (2019). https://doi.org/10.1007/s12010-018-2793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2793-4

Keywords

Navigation