Skip to main content
Log in

Enhancing the Production of d-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

d-Mannitol belongs to a linear polyol with six-carbon and has indispensable usage in medicine and industry. In order to obtain more efficient d-mannitol producer, this study has screened out a stable mutant Penicillium sp. T2-M10 that was isolated from the initial d-mannitol-produced strain Penicillium sp.T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. The mutant had a considerable enhancement in yield of d-mannitol based on optimizing fermentation. The production condition was optimized as the PDB medium with 24 g/L glucose for 9 days. The results showed that the production of d-mannitol from the mutant strain T2-M10 increased 125% in contrast with the parental strain. Meanwhile, the fact that d-mannitol is the main product in the mutant simplified the process of purification. Our finding revealed the potential value of the mutant strain Penicillium sp. T2-M10 to be a d-mannitol-producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saha, B. C., & Racine, F. M. (2011). Biotechnological production of mannitol and its application. Applied Microbiology and Biotechnology, 89(4), 879–891.

    Article  CAS  Google Scholar 

  2. Zhang, T. R., & Song, J. M. (2003). Progress in studies of mannitol medicinal application. Chinese Marine Drugs, 3, 57–61.

    Google Scholar 

  3. Yu, D. M., & Du, Y. G. (2008). The progress on D-mannitol production by microorganism. Academic Periodical of Farm Products Processing, 1, 36–39.

    Google Scholar 

  4. Smiley, K. L., Cadmus, M. C., & Rogovin, S. P. (1969). Shortened fermentation process for D-mannitol. U.S. patent US3427224. 1969, 2-11.

  5. Traxler, M. F., & Kolter, R. (2015). Natural products in soil microbe interactions and evolution. Natural Product Reports, 32(7), 956–970.

    Article  CAS  Google Scholar 

  6. Patnaik, R. (2008). Engineering complex phenotypes in industrial strains. Biotechnology Progress, 24(1), 38–47.

    Article  CAS  Google Scholar 

  7. Parekh, S., Vinci, V. A., & Strobel, R. J. (2000). Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology, 54(3), 287–301.

    Article  CAS  Google Scholar 

  8. Wang, M. Z., Liu, S. S., Li, Y. Y., Xu, R., Lu, C. H., & Shen, Y. M. (2010). Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp. TF5 to produce new compounds. Current Microbiolgy, 61(4), 254–260.

    Article  CAS  Google Scholar 

  9. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & Cardayré, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415(6872), 644–646.

    Article  CAS  Google Scholar 

  10. Duan, R. T., Zhou, H., Yang, Y. B., Li, H. T., Dong, J. W., Li, X. Z., Chen, G. Y., Zhao, L. X., Ding, Z., & T. (2016). Antimicrobial meroterpenoids from the endophytic fungus Penicillium sp. T2-8 associated with Gastrodia elata. Phytochemistry Letters, 18, 197–201.

    Article  CAS  Google Scholar 

  11. El-Kady, I. A., Moubasher, M. H., & Mostafa, M. E. (1995). Accumulation of sugar alcohols by filamentous fungi. Folia Microbiology, 40(5), 481–486.

    Article  CAS  Google Scholar 

  12. Wamoto, H., & Ozawa, M. (1973). D-mannitol. Japanese Patent JP, 48091275(1973), 11–28.

    Google Scholar 

  13. Wamoto, H., Ozawa, M., & Matsumoto, N. (1973). Fermentative production of mannitol. Japanese Patent JP, 48096787(1973), 12–10.

    Google Scholar 

  14. Hattori, K., & Suzuki, T. (1974). Large scale production of erythritol and its conversion to D-mannitol production by normal alkane-grown Candida zeylanoides. Agricultural and Biology Chemistry, 28, 1203–1208.

    Article  Google Scholar 

  15. Gaspar, P., Neves, A. R., Ramos, A., Gasson, M. J., Shearman, C. A., & Santos, H. (2004). Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strain deficient in lactate dehydrogenase and the mannitol transport system. Applied and Environmental Microbiology, 3, 1466–1474.

    Article  Google Scholar 

  16. Soetaert, W. (1990). Production of mannitol with Leuconostoc mensenteroides. Mededelingen van de faculteit land-bouwwetenschappen rijksuniversiteit Gent, 55, 1549–1552.

    CAS  Google Scholar 

  17. Kosalková, K., García-Estrada, C., Ullán, R. V., Godio, R. P., Feltrer, R., Teijeira, F., Mauriz, E., & Martín, J. F. (2009). The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie, 91(2), 214–225.

    Article  Google Scholar 

  18. Bouhired, S., Weber, M., Kempf-Sontag, A., Keller, N. P., & Hoffmeister, D. (2007). Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genetics and Biology, 44(11), 1134–1145.

    Article  CAS  Google Scholar 

  19. Bok, J. W., Balajee, S. A., Marr, K. A., Andes, D., Nielsen, K. F., Frisvad, J. C., & Keller, N. P. (2005). LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryotic Cell, 4(9), 1574–1582.

    Article  CAS  Google Scholar 

  20. Xu, R., Wang, Z. M., Li, C. H., Zhou, Z. H., & Shen, Y. M. (2009). Tuberculariols A-C, new sesquiterpenes from the mutant strain M-741 of Tubercularia sp. TF5. Helvetica Chimica Acta, 92(8), 1514–1519.

    Article  CAS  Google Scholar 

  21. Wei, G. H., Liu, D. P., & Liang, C. C. (2004). Charting gene regulatory networks: strategies, challenges and perspectives. Biochemical Journal, 381(1), 1–12.

    Article  CAS  Google Scholar 

  22. Bok, J. W., & Keller, N. P. (2004). LaeA, a regulator of secondary metabolism in Aspergillus sp. Eukaryotic Cell, 3(2), 527–535.

    Article  CAS  Google Scholar 

  23. Iwamoto, K., & Shiraiwa, Y. (2005). Salt-regulated mannitol metabolism in algae. Marine Biotechnology, 7(5), 407–415.

    Article  CAS  Google Scholar 

  24. Jennings, D. H. (1985). Polyol metabolism in fungi. Advances in Microbial Physiology, 25, 149–193.

    Article  Google Scholar 

  25. Wang, X., Chen, J., Liu, P., Xu, H., Yu, P., & Zhang, X. (2013). Production of D-mannitol by metabolically engineered Escherichia coli. Chinese Journal of Biotechnology, 29(10), 1450–1462.

    PubMed  Google Scholar 

  26. Hu, Z. C., Peng, L. Y., & Zheng, Y. G. (2016). Enhancement of echinocandin B production by a UV- and microwave-induced mutant of Aspergillus nidulans with precursor- and biotin-supplying strategy. Applied Biochemistry and Biotechnology, 179(7), 1213–1226.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by grants from the National Natural Science Foundation of China (No. 81460536 and 81603005), a project of Yunling Scholars of Yunnan province, a grant from the Science and Technology Project of Yunnan Provincial Department of Science and Technology (No. 2017FD059), and a grant from the Scientific Research Foundation of Yunnan Provincial Department of Education (No. 2016zzx003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhou or Zhongtao Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Li, H., Li, H. et al. Enhancing the Production of d-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10. Appl Biochem Biotechnol 186, 990–998 (2018). https://doi.org/10.1007/s12010-018-2791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2791-6

Keywords

Navigation