Skip to main content
Log in

Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Four selected Amaranthus tricolor cultivars were grown under four irrigation regimes (25, 50, 80, and 100% field capacity) to evaluate the mechanisms of growth and physiological and biochemical responses against drought stress in randomized complete block design with three replications. Drought stress led to decrease in total biomass, specific leaf area, relative water content (RWC), photosynthetic pigments (chlorophyll a, chlorophyll b, chlorophyll ab), and soluble protein and increase in MDA, H2O2, EL, proline, total carotenoid, ascorbic acid, polyphenols, flavonoids, and antioxidant activity. However, responses of these parameters were differential in respect to cultivars and the degree of drought stresses. No significant difference was observed in control and LDS for most of the traits. The cultivars VA14 and VA16 were identified as more tolerant to drought and could be used for further evaluations in future breeding programs and new cultivar release programs. Positively significant correlations among MDA, H2O2, compatible solutes, and non-enzymatic antioxidant (proline, TPC, TFC, and TAC) suggested that compatible solutes and non-enzymatic antioxidant played vital role in detoxifying of ROS in A. tricolor cultivar. The increased content of ascorbic acid indicated the crucial role of the ASC–GSH cycle for scavenging ROS in A. tricolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Repo-Carrasco-Valencia, R., Hellstrom, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128–133.

    Article  CAS  Google Scholar 

  2. Steffensen, S. K., Rinnan, A., Mortensen, A. G., Laursen, B., Troiani, R. M., Noellemeyer, E. J., Janovska, D., Dusek, K., Delano-Frier, J., Taberner, A., Christophersen, C., Inge, S., & Fomsgaard, I. S. (2011). Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chemistry, 129(1), 131–138.

    Article  CAS  Google Scholar 

  3. Faize, M., Burgos, L., Faize, L., Piqueras, A., Nicolas, E., Barba-Espin, G., Clemente-Moreno, M. J., Alcobendas, R., Artlip, T., & Hernandez, J. A. (2011). Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of Experimental Botany, 62(8), 2599–2613.

    Article  CAS  Google Scholar 

  4. White, D. A., Turner, N. C., & Galbraith, J. H. (2000). Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiology, 20(17), 1157–1165.

    Article  Google Scholar 

  5. Sircelj, H., Tausz, M., Grill, D., & Batic, F. (2007). Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Scientia Horticulturae, 113(4), 362–369.

    Article  CAS  Google Scholar 

  6. Sircelj, H., Tausz, M., Grill, D., & Batic, F. (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 162(12), 1308–1318.

    Article  CAS  Google Scholar 

  7. Liu, F., & Stutzel, H. (2002). Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. European Journal of Agronomy, 16(2), 137–150.

    Article  Google Scholar 

  8. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2014). Genotypic variability for nutrient, antioxidant, yield and yield contributing traits in vegetable amaranth. Journal of Food, Agriculture and Environment, 12, 168–174.

    CAS  Google Scholar 

  9. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2015a). Variability, heritability and genetic association in vegetable amaranth (Amaranthus tricolor). Spanish Journal of Agricultural Research, 13(2), 1–8. https://doi.org/10.5424/sjar/2015132-6843.

    Article  Google Scholar 

  10. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2015b). Genotype variability in composition of antioxidant vitamins and minerals in vegetable amaranth. Genetika, 47(1), 85–96.

    Article  Google Scholar 

  11. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2016). Genetic variation and interrelationship among antioxidant, quality and agronomic traits in vegetable amaranth. Turkish Journal of Agriculture and Forestry, 40, 526–535.

    Article  CAS  Google Scholar 

  12. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2017). Genotypic diversity in vegetable amaranth for antioxidant, nutrient and agronomic traits. Indian Journal of Genetics and Plant Breeding, 77(1), 173–176.

    Article  Google Scholar 

  13. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2018a). Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth. Journal of Integrative Agriculture, 17(5), 1145–1153.

    Article  CAS  Google Scholar 

  14. Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2018b). Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 68, 67–76.

    CAS  Google Scholar 

  15. Sarker, U., Islam, M. T., Rabbani, M. G., Oba, S. (2018c). Antioxidant leaf pigments and variability in vegetable amaranth. Genetika, 50(1), 209–220.

    Article  Google Scholar 

  16. Ogbaga, C. C., Stepien, P., & Johnson, G. N. (2014). Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiologia Plantarum, 152(2), 389–401.

    Article  CAS  Google Scholar 

  17. Sarker, U., & Oba, S. (2018d). Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chemistry, 252, 72–83.

    Article  CAS  Google Scholar 

  18. Zhao, F., Guo, S., Zhang, H., & Zhao, Y. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 170(2), 216–224.

    Article  CAS  Google Scholar 

  19. Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843–1852.

    Article  CAS  Google Scholar 

  20. Bates, L. S., Waldren, R. P., & Teare, I. K. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205–208.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  22. Ma, Y. H., Ma, F. W., Zhang, J. K., Li, M. J., Wang, Y. H., & Liang, D. (2008). Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science, 175(6), 761–766.

    Article  CAS  Google Scholar 

  23. Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113–4117.

    Article  CAS  Google Scholar 

  24. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  25. Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365–2384.

    Article  CAS  Google Scholar 

  26. Achten, W. M. J., Maes, W. H., Reubens, B., Mathijs, E., Singh, V. P., Verchot, L., & Muys, B. (2010). Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass and Bioenergy, 34(5), 667–676.

    Article  Google Scholar 

  27. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212.

    Article  Google Scholar 

  28. Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., & Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119(3), 257–263.

    Article  CAS  Google Scholar 

  29. Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., & Acet, T. (2011). Exogenous salicylic acid alleviates effects of 554 long term drought stress and delays leaf rolling by inducing antioxidant system. Journal of Plant Growth Regulation, 64(1), 27–37.

    Article  CAS  Google Scholar 

  30. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324–349.

    Article  CAS  Google Scholar 

  31. Liu, H., Li, F., & Xu, H. (2004). Deficiency of water can enhance root respiration rate of drought sensitive but not drought-tolerant spring wheat. Agricultural Water Management, 64(1), 41–48.

    Article  Google Scholar 

  32. Kato, M., & Shimizu, S. (1985). Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant & Cell Physiology, 26, 1291–1301.

    Article  CAS  Google Scholar 

  33. Parida, A. K., Das, A. B., Sanada, Y., & Mohanty, P. (2002). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80, 77–87.

    Article  Google Scholar 

  34. Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389–398.

    Article  CAS  Google Scholar 

  35. Jain, G., Schwinn, K. E., & Gould, K. S. (2015). Functional role of betalains in Disphyma australe under salinity stress. Environmental and Experimental Botany, 109, 131–140.

    Article  CAS  Google Scholar 

  36. Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189–1202.

    Article  CAS  Google Scholar 

  37. Sharma, S., Lin, W., Villamor, J. G., & Verslues, P. E. (2013). Divergent low water potential response in Arabidopsis thaliana accessions Landsberg erecta and Shahdara. Plant, Cell & Environment, 36(5), 994–1008.

    Article  CAS  Google Scholar 

  38. Christou, A., Manganaris, G. A., Papadopoulos, I., & Fotopoulos, V. (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. Journal of Experimental Botany, 64(7), 1953–1966.

    Article  CAS  Google Scholar 

  39. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  CAS  Google Scholar 

  40. Bieker, S., & Zentgraf, U. (2013). Plant senescence and nitrogen mobilization and signaling. In Z. Wang & H. Inuzuka (Eds.), Senescence and senescence-related disorders (Vol. 16, pp. 53–83). Croatia: INTECH.

    Google Scholar 

  41. Mansour, M. M., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52–68.

    Article  CAS  Google Scholar 

  42. Bartwal, A., Mall, R., Lohani, P., Guru, S. K., & Arora, S. (2013). Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation, 32(1), 216–232.

    Article  CAS  Google Scholar 

  43. Ma, G., Zhang, L., Matsuta, A., Matsutani, K., Yamawaki, K., Yahata, M., Wahyudi, A., Motohashi, R., & Kato, M. (2013). Enzymatic formation of ß-citraurin from ß-cryptoxanthin and zeaxanthin by carotenoid cleavage dioxygenase in the flavedo of citrus fruit. Plant Physiology, 163(2), 682–695.

    Article  CAS  Google Scholar 

  44. Hamid, A. A., Aiyelaagbe, O. O., Usman, L. A., Ameen, O. M., & Lawal, A. (2010). Antioxidants: its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry, 4, 142–151.

    CAS  Google Scholar 

  45. Sen, P., Aich, A., Pal, A., Sen, S., & Pa, D. (2014). Profile of antioxidants and scavenger enzymes during different developmental stages in Vigna radiata (L.) Wilczek (Mungbean) under natural environmental conditions. International Journal of Plant Research, 4, 56–61.

    Google Scholar 

  46. Blokhina, O., & Fagerstedt, K. V. (2010). Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiology and Biochemistry, 48(5), 359–373.

    Article  CAS  Google Scholar 

  47. Hanson, P., Yang, R. Y., Chang, L. C., Ledesma, L., & Ledesma, D. (2011). Carotenoids, ascorbic acid, minerals, and total glucosinolates in choysum (Brassica rapa cv g. parachinensis) and kailaan (B. oleraceae Alboglabra group) as affected by variety and wet and dry season production. Journal of Food Composition and Analysis, 24(7), 950–962.

    Article  CAS  Google Scholar 

  48. Espinoza, A., Martína, A. S., Lopez-Climentb, M., Ruiz-Laraa, S., Gomez-Cadenasb, A., & Casarettoa, J. (2013). Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. Journal of Plant Physiology, 170(14), 1285–1294.

    Article  CAS  Google Scholar 

  49. Bettaieb, I., Sellami, I. H., Bourgou, S., Limam, F., & Marzouk, B. (2011). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33(4), 1103–1111.

    Article  CAS  Google Scholar 

  50. Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F., & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47, 417–426.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Oba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, U., Oba, S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Appl Biochem Biotechnol 186, 999–1016 (2018). https://doi.org/10.1007/s12010-018-2784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2784-5

Keywords

Navigation