Skip to main content
Log in

Continuous Laminaribiose Production Using an Immobilized Bienzymatic System in a Packed Bed Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The first continuous production system of laminaribiose from sucrose and glucose in a bienzymatic reaction is reported in this study. Immobilized laminaribiose phosphorylase and sucrose phosphorylase were used in a packed bed reactor system comprising of a 3-cm glass column at 35 °C with a steady feeding flow rate of 0.1 ml/min. Factors affecting product formation including enzyme ratio, peal concept (both enzymes in one pearl or in separate pearls), and pearl size were studied. An enzyme ratio of 2:1 of laminaribiose phosphorylase (LP) to sucrose phosphorylase (SP) when encapsulated separately in bigger size peals resulted in higher concentration of product. Laminaribiose (0.4 g/(L h)) is produced in the optimized system at steady state. The reaction system proved to be operationally stable throughout 10 days of continuous processing. A half-life time of more than 9 days was observed for both biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BR:

Batch reactor

CR:

Continuous reactor

GI:

Glucose isomerase

Glc:

Glucose

Fru:

Fructose

G-1-P:

Glucose-1-phosphate

HPAEC:

High-performance anion exchange chromatography

ISPR:

In situ product removal

Lam:

Laminaribiose

Lam3:

Laminaritriose

LP:

Laminaribiose phosphorylase

PBR:

Packed bed reactor

SP:

Sucrose phosphorylase

Suc:

Sucrose

References

  1. Raman, R., Raguram, S., Venkataraman, G., Paulson, J. C., & Sasisekharan, R. (2005). Glycomics: an integrated systems approach to structure-function relationships of glycans. Nature Methods, 2(11), 817–824.

    Article  CAS  Google Scholar 

  2. Ten Bruggencate, S. J., Bovee-Oudenhoven, I. M., Feitsma, A. L., van Hoffen, E., & Schoterman, M. H. (2014). Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutrition Research, 72(6), 377–389.

    Google Scholar 

  3. Giese, E. C., Covizzi, L. G., Dekker, R. F. H., Monteiro, N. K., Corradi da Silva, M. D. L., & Barbosa, A. M. (2006). Enzymatic hydrolysis of botryosphaeran and laminarin by β-1,3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai. Process Biochemistry, 41(6), 1265–1271.

    Article  CAS  Google Scholar 

  4. Kitaoka, M., Sasaki, T., & Taniguchi, H. (1992). Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase. Journal of Biochemistry, 112(1), 40–44.

    Article  CAS  Google Scholar 

  5. Bächli, P., & Percival, E. G. V. (1952). The synthesis of laminarabiose (3-β-D-glucosyl D-glucose) and proof of its identity with laminaribiose isolated from laminarin. Journal of the Chemical Society, 0(0), 1243–1246.

    Article  Google Scholar 

  6. Ogawa, Y., Noda, K., Kimura, S., Kitaoka, M., & Wada, M. (2014). Facile preparation of highly crystalline lamellae of (1→3)-β-d-glucan using an extract of Euglena gracilis. International Journal of Biological Macromolecules, 64, 415–419.

    Article  CAS  Google Scholar 

  7. Kitaoka, M., Sasaki, T., & Taniguchi, H. (1992). Conversion of sucrose into cellobiose using sucrose phosphorylase, xylose isomerase and cellobiose phosphorylase. Denpun Kagaku, 39(4), 281–283.

    CAS  Google Scholar 

  8. Silverstein, R., Voet, J., Reed, D., & Abeles, R. H. (1967). Purification and mechanism of action of sucrose phosphorylase. The Journal of Biological Chemistry, 242(6), 1338–1346.

    CAS  PubMed  Google Scholar 

  9. Müller, C., Ortmann, T., Abi, A., Hartig, D., Scholl, S., & Jördening, H. J. (2016). Immobilization and characterization of E. gracilis extract with enriched laminaribiose phosphorylase activity for bienzymatic production of laminaribiose. Applied Biochemistry and Biotechnology, 1–19.

  10. Xi, W. W., & Xu, J. H. (2005). Preparation of enantiopure (S)-ketoprofen by immobilized Candida rugosa lipase in packed bed reactor. Process Biochemistry, 40(6), 2161–2166.

    Article  CAS  Google Scholar 

  11. Chen, J., Kimura, Y., & Adachi, S. (2005). Continuous synthesis of 6-O-linoleoyl hexose using a packed-bed reactor system with immobilized lipase. Biochemical Engineering Journal, 22(2), 145–149.

    Article  Google Scholar 

  12. Laudani, C. G., Habulin, M., Knez, Z., Porta, G. D., & Reverchon, E. (2007). Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. Journal of Supercritical Fluids, 41(1), 74–81.

    Article  CAS  Google Scholar 

  13. Watanabe, Y., Miyawaki, Y., Adachi, S., Nakanishi, K., & Matsuno, R. (2001). Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactor and their surfactant properties. Biochemical Engineering Journal, 8(3), 213–216.

    Article  CAS  Google Scholar 

  14. Piao, J., Kobayashi, T., Adachi, S., Nakanishi, K., & Matsuno, R. (2004). Continuous synthesis of lauroyl or oleoyl erythritol by a packed-bed reactor with an immobilized lipase. Process Biochemistry, 39(6), 681–686.

    Article  CAS  Google Scholar 

  15. Xu, X., Skands, A. R. H., Høy, C.-E., Mu, H., Balchen, S., & Adler-Nissen, J. (1998). Production of specific-structured lipids by enzymatic interesterification: elucidation of acyl migration by response surface design. Journal of the American Oil Chemists’ Society, 75(12), 1179–1186.

    Article  CAS  Google Scholar 

  16. Rota, E., Meinander, N., & Hahn-Hagerdal, B. (1996). Xylitol production by immobilized recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering, 51, 317–326.

    Article  Google Scholar 

  17. Müller, C., Hartig, D., Vorländer, K., Sass, A.-C., Scholl, S., & Jördening, H.-J. (2017). Chitosan-based hybrid immobilization in bienzymatic reactions and its application to the production of laminaribiose. Bioprocess and Biosystems Engineering, 40(9), 1399–1410.

    Article  Google Scholar 

  18. Abi, A., Müller, C., & Jördening, H.-J. (2017). Improved laminaribiose phosphorylase production by Euglena gracilis in a bioreactor: a comparative study of different cultivation methods. Biotechnology and Bioprocess Engineering, 22(3), 272–280.

    Article  CAS  Google Scholar 

  19. Suan, C., & Sarmidi, M. R. (2004). Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. Journal of Molecular Catalysis B: Enzymatic, 28(2–3), 111–119.

    Google Scholar 

  20. Park, H., Park, K., & Kim, D. (2006). Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. Journal of Biomedical Materials Research. Part A, 76(1), 144–150.

    Article  Google Scholar 

  21. Zeltinger, J., Sherwood, J. K., Graham, D. A., Müeller, R., & Griffith, L. G. (2001). Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng, 7(5), 557–572.

    Article  CAS  Google Scholar 

  22. Fogler, H. S. (2006). Distributions of residence times for chemical reactors. Elements of Chemical Reaction Engineering, 867–944.

  23. Riet, K., & Tramper, J. (1991). Basic bioreactor design. New York: Marcel Dekker INC.

    Book  Google Scholar 

  24. Levenspeil, O. (1999). Chemical reaction engineering (3rd ed.). USA: Wiley.

    Google Scholar 

  25. Erhardt, F. A., Kügler, J., Chakravarthula, R. R., & Jördening, H. J. (2008). Co-immobilization of dextransucrase and dextranase for the facilitated synthesis of isomalto-oligosaccharides: preparation, characterization and modeling. Biotechnology and Bioengineering, 100(4), 673–683.

    Article  CAS  Google Scholar 

  26. Cleland, W. W. (1963). The kinetics of enzyme-catalyzed reactions with two or more substrate or products. I. Nomenclature and rate equations. Biochimica et Biophysica Acta, 67, 104–137.

    Article  CAS  Google Scholar 

  27. Goedl, C., Schwarz, A., Minani, A., & Nidetzky, B. (2007). Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation and application of immobilised enzyme for production of α-d-glucose 1-phosphate. Journal of Biotechnology, 129(1), 77–86.

    Article  CAS  Google Scholar 

  28. Geo, D. & Indicator, S. (2005). ModelMaker user manual. Data Base. UK.

Download references

Acknowledgements

This research was funded by the German Research Foundation (DFG) under grant numbers JO 355/3-2 and SCHO 842/9-2. Authors also would like to thank Bitop company for kind donation of SP enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Jördening.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abi, A., Wang, A. & Jördening, HJ. Continuous Laminaribiose Production Using an Immobilized Bienzymatic System in a Packed Bed Reactor. Appl Biochem Biotechnol 186, 861–876 (2018). https://doi.org/10.1007/s12010-018-2779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2779-2

Keywords

Navigation