Skip to main content

Advertisement

Log in

Study on Lipid Accumulation in Novel Oleaginous Yeast Naganishia liquefaciens NITTS2 Utilizing Pre-digested Municipal Waste Activated Sludge: a Low-cost Feedstock for Biodiesel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The economical production of lipids is considered as an appropriate renewable alternative feedstock for biodiesel production because of the contemporary concerns on fuel crisis, climate change and food security. In this study, lipid accumulation potential of a novel oleaginous yeast isolate Naganishia liquefaciens NITTS2 by utilizing pre-digested municipal waste activated sludge (PWAS) was explored. Optimization of culture conditions was performed using response surface methodology coupled with genetic algorithm and maximum lipid content of 55.7% was obtained. The presence of lipid was visually confirmed by fluorescence microscopy and its characteristic profile was determined by GC-MS. The yeast lipid was recovered and converted into biodiesel by garbage lipase with the efficiency of 88.34 ± 1.2%, which was further analyzed by proton nuclear magnetic resonance spectroscopy. Hence, the results of this study strongly suggest the possibility of using PWAS as an efficient and low-cost resource for the production of biodiesel from the oleaginous yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luque, R., Lovett, J. C., Datta, B., Clancy, J., Campelo, J. M., & Romeroa, A. A. (2010). Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy & Environmental Science, 3, 1706–1721. https://doi.org/10.1039/C0EE00085J.

    Article  CAS  Google Scholar 

  2. Zhang, X., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2013). Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge. Renewable Energy, 55, 392–403. https://doi.org/10.1016/j.renene.2012.12.046.

    Article  CAS  Google Scholar 

  3. Lal, B., & Sarma, P. (2009). Wealth from waste trends and technologies. TERI Press.

  4. Venkatesagowda, B., Ponugupaty, E., Barbosa-Dekker, A. M., & Dekker, R. F. H. (2017). The purification and characterization of lipases from Lasiodiplodia theobromae, and their immobilization and use for biodiesel production from coconut oil. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-017-2670-6.

    Article  Google Scholar 

  5. Poppe, J. K., Matte, C. R., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2018). Transesterification of waste frying oil and soybean oil by combi-lipases under ultrasound-assisted reactions. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-018-2763-x.

  6. Karatay, S. E., & Donmez, G. (2010). Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technology, 101(20), 7988–7990. https://doi.org/10.1016/j.biortech.2010.05.054.

    Article  CAS  PubMed  Google Scholar 

  7. Kwon, E. E., Kim, S., Jeon, Y. J., & Yim, H. (2012). Biodiesel production from sewage sludge: new paradigm for mining energy from municipal hazardous material. Environmental Science and Technology, 46(18), 10222–10228. https://doi.org/10.1021/es3019435.

    Article  CAS  PubMed  Google Scholar 

  8. Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., Germanm, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances, 32(7), 1336–1360. https://doi.org/10.1016/j.biotechadv.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  9. Lopes da Silva, T., Feijao, D., Roseiro, J. C., & Reism, A. (2011). Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. Bioresource Technology, 102(3), 2998–3006. https://doi.org/10.1016/j.biortech.2010.10.008.

    Article  CAS  Google Scholar 

  10. Botham, P. A., & Ratledge, C. A. (1979). A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. Journal of General Microbiology, 114(2), 361–375. https://doi.org/10.1099/00221287-114-2-361.

    Article  CAS  PubMed  Google Scholar 

  11. He, M. Q., Hu, X., Gou, X., Liu, Q., Li, K., Pan, Q., & Zhu Wu, J. (2010). Screening of oleaginous yeast with xylose assimilating capacity for lipid and bio-ethanol production. African Journal of Biotechnology, 9, 8392–8397.

    CAS  Google Scholar 

  12. Probst, K. V., Schulte, L. R., Durrett, T. P., Rezac, M. E., & Vadlani, P. V. (2015). Oleaginous yeast: a value-added platform for renewable oils. Critical Reviews in Biotechnology, 36(5), 942–955. https://doi.org/10.3109/07388551.2015.1064855.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez, M. A., Ceron Garcia, M. C., Contreras Gomez, A., Garcia Camacho, F., Molina Grima, E., & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287–297. https://doi.org/10.1016/S1369-703X(03)00072-X.

    Article  CAS  Google Scholar 

  14. Peccia, J., & Westerhoff, P. (2015). We should expect more out of our sewage sludge. Environmental Science and Technology, 49(14), 8271–8276. https://doi.org/10.1021/acs.est.5b01931.

    Article  CAS  PubMed  Google Scholar 

  15. Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: a review. Journal of Hazardous Materials, 183(1–3), 1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129.

    Article  CAS  PubMed  Google Scholar 

  16. Selvakumar, P., & Sivashanmugam, P. (2018). Multi-hydrolytic biocatalyst from organic solid waste and its application in municipal waste activated sludge pre-treatment towards energy recovery. Process Safety and Environmental Protection, 117, 1–10. https://doi.org/10.1016/j.psep.2018.03.036.

    Article  CAS  Google Scholar 

  17. Leiva-Candia, D. E., Pinzi, S., Redel-Macias, M. D., Koutinas, A., Colin Webb, C., & Dorado, M. P. (2014). The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 123, 33–42. https://doi.org/10.1016/j.fuel.2014.01.054.

    Article  CAS  Google Scholar 

  18. Soufi, M. D., Ghobadian, B., Najafi, G., Mousavi, S. M., & Aubin, J. (2017). Optimization of methyl ester production from waste cooking oil in a batch tri-orifice oscillatory baffled reactor. Fuel Processing Technology, 167, 641–647. https://doi.org/10.1016/j.fuproc.2017.07.030.

    Article  CAS  Google Scholar 

  19. Selvakumar, P., Kavitha, S., & Sivashanmugam, P. (2018). Optimization of process parameters for efficient bioconversion of thermo-chemo pretreated Manihot esculenta crantz YTP1 stem to ethanol. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-018-0244-7.

  20. Anand, K., & Elangovan, S. (2017). Optimizing the ultrasonic inserting parameters to achieve maximum pull-out strength using response surface methodology and genetic algorithm integration technique. Measurement, 99, 145–154. https://doi.org/10.1016/j.measurement.2016.12.025.

    Article  Google Scholar 

  21. Yanh, Y., Yan, M., & Hu, B. (2014). Endophytic fungal strains of soybean for lipid production. Bioenergy Research, 7(1), 353–361. https://doi.org/10.1007/s12155-013-9377-5.

    Article  CAS  Google Scholar 

  22. Selvakumar, P., & Sivashanmugam, P. (2017). Thermo-chemo-sonic pre-digestion of waste activated sludge for yeast cultivation to extract lipids for biodiesel production. Journal of Environmental Management, 198(1), 90–98. https://doi.org/10.1016/j.jenvman.2017.04.064.

    Article  CAS  PubMed  Google Scholar 

  23. Mouget, J. L., Rosa, P., & Tremblin, G. (2004). Acclimation of Haslea ostrearia to light of different spectral qualities confirmation of chromatic adaptation in diatoms. Journal of Photochemistry and Photobiology B: Biology, 75(1–2), 1–11. https://doi.org/10.1016/j.jphotobiol.2004.04.002.

    Article  CAS  Google Scholar 

  24. Zhang, X., Yan, S., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2014). Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresource Technology, 158, 253–261. https://doi.org/10.1016/j.biortech.2014.01.132.

    Article  CAS  PubMed  Google Scholar 

  25. Selvakumar, P., & Sivashanmugam, P. (2017). Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Processing Technology, 165, 1–8. https://doi.org/10.1016/j.fuproc.2017.04.020.

    Article  CAS  Google Scholar 

  26. Vicentea, G., Bautista, L. F., Rodriguez, R., Gutierrez, F. J., Sadaba, I., Ruiz-Vazquezb Ros, M., Torres-Martinez, S., & Garre, V. (2009). Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 48(1), 22–27. https://doi.org/10.1016/j.bej.2009.07.014.

    Article  CAS  Google Scholar 

  27. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  28. Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5. https://doi.org/10.1016/j.renene.2008.04.014.

    Article  CAS  Google Scholar 

  29. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375–387. https://doi.org/10.1016/j.plipres.2009.08.005.

    Article  CAS  PubMed  Google Scholar 

  30. Bruno, W. J., Socci, N. D., & Halpern, A. L. (2000). Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17(1), 189–197. https://doi.org/10.1093/oxfordjournals.molbev.a026231.

    Article  CAS  PubMed  Google Scholar 

  31. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian protein metabolism (Vol. 3, pp. 21–132). New York: Academic Press. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.

    Chapter  Google Scholar 

  32. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  Google Scholar 

  33. Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507. https://doi.org/10.1007/s10811-008-9392-7.

    Article  CAS  Google Scholar 

  34. Jawaharraj, K., Karpagam, R., Ashokkumar, B., Kathiresan, S., Moorthy, I. M. G., Arumugam, M., & Varalakshmi, P. (2017). Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production. Bioresource Technology, 242, 128–132. https://doi.org/10.1016/j.biortech.2017.03.067.

    Article  CAS  PubMed  Google Scholar 

  35. Uma, R. R., Kaliappan, S., Adish Kumar, S., & Rajesh Banu, J. (2012). Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresource Technology, 126, 107–116. https://doi.org/10.1016/j.biortech.2012.09.027.

    Article  CAS  Google Scholar 

  36. Xu, J., Du, W., Zhao, X., Zhang, G., & Liu, D. (2013). Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels, Bioproducts and Biorefining, 7(1), 65–77. https://doi.org/10.1002/bbb.1372.

    Article  CAS  Google Scholar 

  37. Kock, J. L., & Ratledge, C. (1993). Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopsis uninucleata. Journal of General Microbiology, 139(3), 459–464. https://doi.org/10.1099/00221287-139-3-459.

    Article  CAS  PubMed  Google Scholar 

  38. Papanikolaou, S., Sarantou, S., Komaitis, M., & Aggelis, G. (2004). Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 97(4), 867–875. https://doi.org/10.1111/j.1365-2672.2004.02376.x.

    Article  CAS  PubMed  Google Scholar 

  39. Hansson, L., & Dostalek, M. (1986). Influence of cultivation conditions on lipid production by Cryptococcus albidus. Applied Microbiology and Biotechnology, 24(1), 12–18. https://doi.org/10.1007/BF00266278.

    Article  CAS  Google Scholar 

  40. Deeba, F., Pruthi, V., & Negi, Y. S. (2016). Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresource Technology, 213, 96–102. https://doi.org/10.1016/j.biortech.2016.02.105.

    Article  CAS  PubMed  Google Scholar 

  41. Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173(8), 2086–2098. https://doi.org/10.1007/s12010-014-1007-y.

    Article  CAS  PubMed  Google Scholar 

  42. Araujo, G. S., Matos, L. J. B. L., Fernandes, J. O., Cartaxo, S. J. M., Gonçalves, L. R. B., Fernandes, F. A. N., & Farias., W. R. L. (2013). Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrasonics Sonochemistry, 20(1), 95–98. https://doi.org/10.1016/j.ultsonch.2012.07.027.

    Article  CAS  Google Scholar 

  43. Jin, F., Kawasaki, K., Kishida, H., Tohji, K., Moriya, T., & Enomoto, H. (2007). NMR spectroscopy study on methanolysis reaction of vegetable oil. Fuel, 86(7–8), 1201–1207. https://doi.org/10.1016/j.fuel.2006.10.013.

    Article  CAS  Google Scholar 

  44. Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92(3), 336–341. https://doi.org/10.1016/j.fuproc.2010.09.025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sivashanmugam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary data

ESM 1

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, P., Sivashanmugam, P. Study on Lipid Accumulation in Novel Oleaginous Yeast Naganishia liquefaciens NITTS2 Utilizing Pre-digested Municipal Waste Activated Sludge: a Low-cost Feedstock for Biodiesel Production. Appl Biochem Biotechnol 186, 731–749 (2018). https://doi.org/10.1007/s12010-018-2777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2777-4

Keywords

Navigation