Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 476–495 | Cite as

Arcopilus aureus, a Resveratrol-Producing Endophyte from Vitis vinifera

  • Vagish Dwibedi
  • Sanjai Saxena


Resveratrol is extensively being used as a therapeutic moiety, as well as a pharmacophore for development of new drugs due to its multifarious beneficial effects. The objective of the present study was to isolate and screen the resveratrol-producing endophytic fungi from different varieties of Vitis vinifera. A total of 53 endophytic fungi belonging to different fungal genera were isolated from the stem and leaf tissues of Vitis vinifera (merlot, wild, pinot noir, Shiraz, muscat) from different grape-producing locations of India. Only 29 endophytic fungal isolates exhibited a positive test for phenolics by phytochemical methods. The resveratrol obtained after ethyl acetate extraction was confirmed using standard molecule on thin layer chromatography (TLC) with a retention factor (Rf) of 0.69. The purified and standard resveratrol were visualized under UV light as a violet-colored spot. In HPLC analysis of the ethyl acetate extract of culture broth of 11 endophytic isolates, the highest resveratrol content was found in #12VVLPM (89.1 μg/ml) followed by #18VVLPM (37.3 μg/ml) and 193VVSTPM (25.2 μg/ml) exhibiting a retention time of 3.36 min which corresponded to the standard resveratrol. The resveratrol-producing isolates belong to seven genera viz. Aspergillus, Botryosphaeria, Penicillium, Fusarium, Alternaria, Arcopilus, and Lasiodiplodia, and using morphological and molecular methods, #12VVLPM was identified as Arcopilus aureus.


Endophyte Fungi Grapes Arcopilus sp. Resveratrol 



The authors thank the Department of Biotechnology and TIFAC-CORE (Centre of Relevance and Excellence), Thapar Institute of Engineering & Technology, Patiala, Punjab, for providing the necessary infrastructure to carry out the research work.

Funding Information

The authors thank the Department of Biotechnology (DBT), Government of India, New Delhi, for financial assistance through Project No. BT/PR9094/NDB/39/378/2013

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bradamante, S., Barenghi, L., & Villa, A. (2004). Cardiovascular protective effects of resveratrol. Cardiovascular Drug Reviews, 22, 169–188.CrossRefGoogle Scholar
  2. 2.
    Jang, M. S., Cai, E. N., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.CrossRefGoogle Scholar
  3. 3.
    Saxena, S., & Srivastava, A. (2014). Resveratrol: biological activities and therapeutic potential. Journal of Pharmaceutical Technology, Research and Management, 2(2), 145–157.CrossRefGoogle Scholar
  4. 4.
    Wang, D. G., Liu, W. Y., & Chen, G. T. (2013). A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. Journal of Pharmaceutical Analysis, 3(4), 241–247.CrossRefGoogle Scholar
  5. 5.
    Fremont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663–673.CrossRefGoogle Scholar
  6. 6.
    Wang, Q., Xu, J. F., Rottinghaus, G. E., Simonyi, A., Lubahn, D., Sun, G. Y., & Sun, A. Y. (2002). Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 958(2), 439–447.CrossRefGoogle Scholar
  7. 7.
    Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 5(6), 493–506.CrossRefGoogle Scholar
  8. 8.
    Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23(5), 753–771.CrossRefGoogle Scholar
  9. 9.
    Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y., & Holz, M. K. (2017). The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precision Oncology, 1(1), 35.CrossRefGoogle Scholar
  10. 10.
    Tassoni, A., Fornale, S., Franceschetti, M., Musiani, F., Michael, A. J., Perry, B., & Bagni, N. (2005). Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. The New Phytologist, 166(3), 895–905.CrossRefGoogle Scholar
  11. 11.
    Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491–502.CrossRefGoogle Scholar
  12. 12.
    Suryanarayanan, T. S., Thirunavukkarasu, N., Govindarajulu, M. B., Sasse, F., Jansen, R., & Murali, T. S. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23(1-2), 9–19.CrossRefGoogle Scholar
  13. 13.
    Schulz, B., Wanke, U., Draeger, S., & Aust, H. J. (1993). Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycological Research, 97(12), 1447–1450.CrossRefGoogle Scholar
  14. 14.
    Photita, W., Lumyong, S., Lumyong, P., & Hyde, K. D. (2001). Endophytic fungi of wild banana (Musa acuminata) at DosiSuthepPui National Park, Thailand. Mycological Research, 105(12), 1508–1513.CrossRefGoogle Scholar
  15. 15.
    Suryanarayanan, T. S., Venkatesan, G., & Murali, T. S. (2003). Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Current Science, 85(4), 489–492.Google Scholar
  16. 16.
    Gupta, Y. K., Briyal, S., & Chaudhary, G. (2002). Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacology Biochemistry and Behavior, 71(1-2), 245–249.CrossRefGoogle Scholar
  17. 17.
    Shi, J., Zeng, Q., Liu, Y., & Pan, Z. (2012). Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Applied Microbiology and Biotechnology, 95(2), 369–379.CrossRefGoogle Scholar
  18. 18.
    Al-Jumaily, E. F. A., Hamid, G. S., & Ali, K. F. (2014). Synthesis and total phenol content of new resveratrol derivative. American Journal of Advanced Drug Discovery, (2–3), 320–329.Google Scholar
  19. 19.
    Park, J., & Boo, Y. C. (2013). Isolation of resveratrol from Vitis viniferae caulis and its potent inhibition of human tyrosinase. Evidence-Based Complementary and Alternative Medicine. Article ID 645257.Google Scholar
  20. 20.
    Babu, S. K., Kumar, K. V., & Subbaraju, G. V. (2005). Estimation of trans-resveratrol in herbal extracts and dosage forms by high-performance thin layer chromatography. Chemical and Pharmaceutical Bulletin, 53(6), 691–693.CrossRefGoogle Scholar
  21. 21.
    Wang, X. W., Houbraken, J., Groenwald, J. Z., Meijer, M., Andersen, B., Nielsen, K. F., Crous, P. W., & Samson, R. A. (2016). Diversity and taxonomy of Chaetomium and Chaetomium-like fungi from indoor environments. Studies in Mycology, 84, 145–224.CrossRefGoogle Scholar
  22. 22.
    White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Vol. 18, pp. 315–322).Google Scholar
  23. 23.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(10), 2725–2729.CrossRefGoogle Scholar
  24. 24.
    Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Coloma, A., Cosoveanu, A., Cabrera, R., Gimenez, C., & Kaushik, N. (2016). Endophytic fungi and their bioprospection. In S. K. Deshmukh, J. K. Misra, J. P. Tewari, & T. Papp (Eds.), Fungi: applications and management strategies (pp. 14–31). CRC Press.Google Scholar
  26. 26.
    Le Cocq, K., Gurr, S. J., Hirsch, P. R., & Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18(3), 469–473.CrossRefGoogle Scholar
  27. 27.
    Aly, A. H., Debbab, A., & Proksch, P. (2013). Fungal endophytes—secret producers of bioactive plant metabolites. An International Journal of Pharmaceutical Sciences, 68(7), 499–505.Google Scholar
  28. 28.
    Kharwar, R. N., Kumar, A., Verma, V. C., & Redman, R. S. (2015). Book chapter Ajit Varma (Endophytes). Endophytic fungi: better players of biodiversity, stress tolerance, host protection and antimicrobial production. A textbook of molecular biotechnology, pp 1033–1057.Google Scholar
  29. 29.
    Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35(3), 146–154.CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Nan, L., Liu, J., Yan, H., Zhang, D., & Han, X. (2016). Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. Springer Plus, 5(1), 1029.CrossRefGoogle Scholar
  31. 31.
    Langcake, P., & Pryce, R. J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9(1), 77–86.CrossRefGoogle Scholar
  32. 32.
    González, V., & Tello, M. L. (2011). The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity, 47(1), 29–42.CrossRefGoogle Scholar
  33. 33.
    Brum, M. C. P. D., Araujo, W. L. D., Maki, C. S., & Azevedo, J. L. D. (2012). Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genetics and Molecular Research, 11(4), 4187–4197.CrossRefGoogle Scholar
  34. 34.
    Fisher, P. J., Anson, A. E., & Petrini, O. (1986). Fungal endophytes in Ulex europaeus and Ulex gallii. Transactions of the British Mycological Society, 86(1), 153–156.CrossRefGoogle Scholar
  35. 35.
    Roll-Hansen, F., & Roll-Hansen, H. (1979). Ascocoryne species in living stems of Picea species: a literature review. Forest Pathology, 9(5), 275–280.CrossRefGoogle Scholar
  36. 36.
    Rodriguez, R. J., White Jr., J. F., Arnold, A. E., & Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2), 314–330.CrossRefGoogle Scholar
  37. 37.
    Kernaghan, G., Mayerhofer, M., & Griffin, A. (2017). Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Canadian Journal of Microbiology, 63(7), 583–595.CrossRefGoogle Scholar
  38. 38.
    Mostert, L., Crous, P. W., & Petrini, O. (2000). Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia, 52(1), 46–58.Google Scholar
  39. 39.
    Zeng, Q., Shi, J. L., & Liu, Y. L. (2012). Isolation and identification of a resveratrol-producing endophytic fungus from grape. Food Science, 33(13), 167–170.Google Scholar
  40. 40.
    Gond, S. K., Verma, V. C., Kumar, A., Kumar, V., & Kharwar, R. N. (2007). Study of endophytic fungal community from different parts of Aegle marmelos Correa (Rutaceae) from Varanasi (India). World Journal of Microbiology and Biotechnology, 23(10), 1371–1375.CrossRefGoogle Scholar
  41. 41.
    Kharwar, R. N., Maurya, A. L., Verma, V. C., Kumar, A., GOND, S. K., & Mishra, A. (2012). Diversity and antimicrobial activity of Endophytic fungal community isolated from medicinal plant Cinnamomum camphora. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(4), 557–565.CrossRefGoogle Scholar
  42. 42.
    Márquez, S. S., Bills, G. F., Acuña, L. D., & Zabalgogeazcoa, I. (2010). Endophytic mycobiota of leaves and roots of the grass Holcuslanatus. Fungal Diversity, 41(1), 115–123.CrossRefGoogle Scholar
  43. 43.
    Musetti, R., Vecchione, A., Stringher, L., Borselli, S., Zulini, L., Marzani, C., D’Ambrosio, M., di Toppi, L. S., & Pertot, I. (2006). Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology, 96(7), 689–698.CrossRefGoogle Scholar
  44. 44.
    Casieri, L., Hofstetter, V. A. L. É. R. I. E., Viret, O. L. I. V. I. E. R., & Gindro, K. A. T. I. A. (2009). Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathologia Mediterranea, 48(1), 73–83.Google Scholar
  45. 45.
    Bills, G. F., & Polishook, J. D. (1994). Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia, 86(2), 187–198.CrossRefGoogle Scholar
  46. 46.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.Google Scholar
  47. 47.
    Somrithipol, S. (2004). Coprophilous fungi. In E. B. G. Jones, M. Tanticharoen, & K. D. Hyde (Eds.), Thai fungal diversity (pp. 119–128). Thailand: BIOTEC.Google Scholar
  48. 48.
    Soytong, K., & Quimio, T. H. (1989). A taxonomic study on the Philippine species of Chaetomium. The Philippine agriculturist, 72(1), 59–72.Google Scholar
  49. 49.
    Brewer, D., Jerram, W. A., & Taylor, A. (1968). The production of cochliodinol and a related metabolite by Chaetomium species. Canadian Journal of Microbiology, 14(8), 861–866.CrossRefGoogle Scholar
  50. 50.
    Kanokmedhakul, S., Kanokmedhakul, K., Phonkerd, N., Soytong, K., Kongsaeree, P., & Suksamrarn, A. (2001). Anti-mycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITLN0802. Planta Medica, 68(9), 834–836.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations