Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 459–475 | Cite as

Engineering Pichia pastoris for Efficient Production of a Novel Bifunctional Strongylocentrotus purpuratus Invertebrate-Type Lysozyme

  • Peng Huang
  • Jinlei Shi
  • Qingwen Sun
  • Xianping Dong
  • Ning Zhang


Lysozymes are known as ubiquitously distributed immune effectors with hydrolytic activity against peptidoglycan, the major bacterial cell wall polymer, to trigger cell lysis. In the present study, the full-length cDNA sequence of a novel sea urchin Strongylocentrotus purpuratus invertebrate-type lysozyme (sp-iLys) was synthesized according to the codon usage bias of Pichia pastoris and was cloned into a constitutive expression plasmid pPIC9K. The resulting plasmid, pPIC9K-sp-iLys, was integrated into the genome of P. pastoris strain GS115. The bioactive recombinant sp-iLys was successfully secreted into the culture broth by positive transformants. The highest lytic activity of 960 U/mL of culture supernatant was reached in fed-batch fermentation. Using chitin affinity chromatography and gel-filtration chromatography, recombinant sp-iLys was produced with a yield of 94.5 mg/L and purity of > 99%. Recombinant sp-iLys reached its peak lytic activity of 8560 U/mg at pH 6.0 and 30 °C and showed antimicrobial activities against Gram-negative bacteria (Vibrio vulnificus, Vibrio parahemolyticus, and Aeromonas hydrophila) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In addition, recombinant sp-iLys displayed isopeptidase activity which reached the peak at pH 7.5 and 37 °C with the presence of 0.05 M Na+. In conclusion, this report describes the heterologous expression of recombinant sp-iLys in P. pastoris on a preparative-scale, which possesses lytic activity and isopeptidase activity. This suggests that sp-iLys might play an important role in the innate immunity of S. purpuratus.


Invertebrate-type lysozyme Strongylocentrotus purpuratus Pichia pastoris Antimicrobial activity Isopeptidase activity 



Strongylocentrotus purpuratus invertebrate-type lysozyme


Alcoholoxidase 1


Yeast extract peptone dextrose


Buffered glycerol-complex medium


Buffered methanol-complex medium


Minimal dextrose


Polymerase chain reaction


Wet cell weight


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Optical density


Dissolved oxygen


Phosphate-buffered saline


Reverse-phase high performance liquid chromatography


Hen egg white lysozyme






3-(N-morpholino) propanesulfonic acid



This work was supported by the Shanghai Municipal Commission of Health and Family Planning (Grant Number: 201740161) and the Natural Science Foundation of Shanghai (Grant Number: 15ZR1421800).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12010_2018_2753_Fig8_ESM.gif (313 kb)
Fig. S1

Identification of pPIC9K-sp-iLys by digestion with restriction enzymes. Lane M: DNA marker; Lane 1: pPIC9K-sp-iLys digested with BamH I and EcoR I (GIF 313 kb)

12010_2018_2753_MOESM1_ESM.tif (2.2 mb)
High resolution image (TIF 2.22 mb)
12010_2018_2753_Fig9_ESM.gif (871 kb)
Fig. S2

Identification of positive P. pastoris transformants by PCR. Lane M: DNA marker; Lane 1: genomic DNA of P. pastoris GS115; Lane 2: empty pPIC9K vector; Lane 3: positive control; Lanes 4 and 6–10: positive transformants; Lane 5: negative clone (GIF 6.26 mb)

12010_2018_2753_MOESM2_ESM.tif (6.3 mb)
High resolution image (TIF 871 kb)


  1. 1.
    Jollès, P., & Jollès, J. (1984). What’s new in lysozyme research? Always a model system, today as yesterday. Molecular and Cellular Biochemistry, 63(2), 165–189.CrossRefGoogle Scholar
  2. 2.
    Qasba, P. K., & Kumar, S. (1997). Molecular divergence of lysozymes and alpha-lactalbumin. Critical Reviews in Biochemistry and Molecular Biology, 32(4), 255–306.CrossRefGoogle Scholar
  3. 3.
    Bachali, S., Bailly, X., Jolles, J., Jolles, P., & Deutsch, J. S. (2004). The lysozyme of the starfish Asterias rubens. A paradygmatic type i lysozyme. European Journal of Biochemistry, 271(2), 237–242.CrossRefGoogle Scholar
  4. 4.
    Hikima, S., Hikima, J., Rojtinnakorn, J., Hirono, I., & Aoki, T. (2003). Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene, 316, 187–195.CrossRefGoogle Scholar
  5. 5.
    Jollès, J., Fiala-Médioni, A., & Jollès, P. (1996). The ruminant digestion model using bacteria already employed early in evolution by symbiotic molluscs. Journal of Molecular Evolution, 43(5), 523–527.CrossRefGoogle Scholar
  6. 6.
    Canfield, R. E., & McMurry, S. (1967). Purification and characterization of a lysozyme from goose egg white. Biochemical and Biophysical Research Communications, 26(1), 38–42.CrossRefGoogle Scholar
  7. 7.
    Van Herreweghe, J. M., & Michiels, C. W. (2012). Invertebrate lysozymes: diversity and distribution, molecular mechanism and in vivo function. Journal of Biosciences, 37(2), 327–348.CrossRefGoogle Scholar
  8. 8.
    Jolles, J., & Jolles, P. (1975). The lysozyme from Asterias rubens. European Journal of Biochemistry, 54(1), 19–23.CrossRefGoogle Scholar
  9. 9.
    Zavalova, L. L., Baskova, I. P., Lukyanov, S. A., Sass, A. V., Snezhkov, E. V., Akopov, S. B., Artamonova, I. I., Archipova, V. S., Nesmeyanov, V. A., Kozlov, D. G., Benevolensky, S. V., Kiseleva, V. I., Poverenny, A. M., & Sverdlov, E. D. (2000). Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochimica et Biophysica Acta, 1478(1), 69–77.CrossRefGoogle Scholar
  10. 10.
    Ito, Y., Yoshikawa, A., Hotani, T., Fukuda, S., Sugimura, K., & Imoto, T. (1999). Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. European Journal of Biochemistry, 259(1-2), 456–461.CrossRefGoogle Scholar
  11. 11.
    Bachali, S., Jager, M., Hassanin, A., Schoentgen, F., Jolles, P., Fiala-Medioni, A., et al. (2002). Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. Journal of Molecular Evolution, 54(5), 652–664.CrossRefGoogle Scholar
  12. 12.
    Goto, T., Abe, Y., Kakuta, Y., Takeshita, K., Imoto, T., & Ueda, T. (2007). Crystal structure of Tapes japonica lysozyme with substrate analogue: structural basis of the catalytic mechanism and manifestation of its chitinase activity accompanied by quaternary structural change. Journal of Biological Chemistry, 282(37), 27459–27467.CrossRefGoogle Scholar
  13. 13.
    Bathige, S. D., Umasuthan, N., Kasthuri, S. R., Whang, I., Lim, B. S., Nam, B. H., et al. (2013). A bifunctional invertebrate-type lysozyme from the disk abalone, Haliotis discus discus: genome organization, transcriptional profiling and biological activities of recombinant protein. Developmental and Comparative Immunology, 41(2), 282–294.CrossRefGoogle Scholar
  14. 14.
    Loker, E. S., Adema, C. M., Zhang, S. M., & Kepler, T. B. (2004). Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunological Reviews, 198(1), 10–24.CrossRefGoogle Scholar
  15. 15.
    Callewaert, L., & Michiels, C. W. (2010). Lysozymes in the animal kingdom. Journal of Biosciences, 35(1), 127–160.CrossRefGoogle Scholar
  16. 16.
    Sodergren, E., Weinstock, G. M., Davidson, E. H., Cameron, R. A., Gibbs, R. A., Angerer, R. C., Angerer, L. M., Arnone, M. I., Burgess, D. R., Burke, R. D., Coffman, J. A., Dean, M., Elphick, M. R., Ettensohn, C. A., Foltz, K. R., Hamdoun, A., Hynes, R. O., Klein, W. H., Marzluff, W., Mcclay, D. R., Morris, R. L., Mushegian, A., Rast, J. P., Smith, L. C., Thorndyke, M. C., Vacquier, V. D., Wessel, G. M., Wray, G., Zhang, L., Elsik, C. G., Ermolaeva, O., Hlavina, W., Hofmann, G., Kitts, P., Landrum, M. J., Mackey, A. J., Maglott, D., Panopoulou, G., Poustka, A. J., Pruitt, K., Sapojnikov, V., Song, X., Souvorov, A., Solovyev, V., Wei, Z., Whittaker, C. A., Worley, K., Durbin, K. J., Shen, Y., Fedrigo, O., Garfield, D., Haygood, R., Primus, A., Satija, R., Severson, T., Gonzalez-Garay, M. L., Jackson, A. R., Milosavljevic, A., Tong, M., Killian, C. E., Livingston, B. T., Wilt, F. H., Adams, N., Belle, R., Carbonneau, S., Cheung, R., Cormier, P., Cosson, B., Croce, J., Fernandez-Guerra, A., Geneviere, A.-M., Goel, M., Kelkar, H., Morales, J., Mulner-Lorillon, O., Robertson, A. J., Goldstone, J. V., Cole, B., Epel, D., Gold, B., Hahn, M. E., Howard-Ashby, M., Scally, M., Stegeman, J. J., Allgood, E. L., Cool, J., Judkins, K. M., Mccafferty, S. S., Musante, A. M., Obar, R. A., Rawson, A. P., Rossetti, B. J., Gibbons, I. R., Hoffman, M. P., Leone, A., Istrail, S., Materna, S. C., Samanta, M. P., Stolc, V., Tongprasit, W., Tu, Q., Bergeron, K.-F., Brandhorst, B. P., Whittle, J., Berney, K., Bottjer, D. J., Calestani, C., Peterson, K., Chow, E., Yuan, Q. A., Elhaik, E., Graur, D., Reese, J. T., Bosdet, I., Heesun, S., Marra, M. A., Schein, J., Anderson, M. K., Brockton, V., Buckley, K. M., Cohen, A. H., Fugmann, S. D., Hibino, T., Loza-Coll, M., Majeske, A. J., Messier, C., Nair, S. V., Pancer, Z., Terwilliger, D. P., Agca, C., Arboleda, E., Chen, N., Churcher, A. M., Hallbook, F., Humphrey, G. W., Idris, M. M., Kiyama, T., Liang, S., Mellott, D., Mu, X., Murray, G., Olinski, R. P., Raible, F., Rowe, M., Taylor, J. S., Tessmar-Raible, K., Wang, D., Wilson, K. H., Yaguchi, S., Gaasterland, T., Galindo, B. E., Gunaratne, H. J., Juliano, C., Kinukawa, M., Moy, G. W., Neill, A. T., Nomura, M., Raisch, M., Reade, A., Roux, M. M., Song, J. L., Su, Y.-H., Townley, I. K., Voronina, E., Wong, J. L., Amore, G., Branno, M., Brown, E. R., Cavalieri, V., Duboc, V., Duloquin, L., Flytzanis, C., Gache, C., Lapraz, F., Lepage, T., Locascio, A., Martinez, P., Matassi, G., Matranga, V., Range, R., Rizzo, F., Rottinger, E., Beane, W., Bradham, C., Byrum, C., Glenn, T., Hussain, S., Manning, G., Miranda, E., Thomason, R., Walton, K., Wikramanayke, A., Wu, S.-Y., Xu, R., Brown, C. T., Chen, L., Gray, R. F., Lee, P. Y., Nam, J., Oliveri, P., Smith, J., Muzny, D., Bell, S., Chacko, J., Cree, A., Curry, S., Davis, C., Dinh, H., Dugan-Rocha, S., Fowler, J., Gill, R., Hamilton, C., Hernandez, J., Hines, S., Hume, J., Jackson, L., Jolivet, A., Kovar, C., Lee, S., Lewis, L., Miner, G., Morgan, M., Nazareth, L. V., Okwuonu, G., Parker, D., Pu, L.-L., Thorn, R., & Wright, R. (2006). The genome of the sea urchin Strongylocentrotus purpuratus. Science, 314(5801), 941–952.CrossRefGoogle Scholar
  17. 17.
    Hibino, T., Loza-Coll, M., Messier, C., Majeske, A. J., Cohen, A. H., Terwilliger, D. P., Buckley, K. M., Brockton, V., Nair, S. V., Berney, K., Fugmann, S. D., Anderson, M. K., Pancer, Z., Cameron, R. A., Smith, L. C., & Rast, J. P. (2006). The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 300(1), 349–365.CrossRefGoogle Scholar
  18. 18.
    Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T., & Litman, G. W. (2006). Genomic insights into the immune system of the sea urchin. Science, 314(5801), 952–956.CrossRefGoogle Scholar
  19. 19.
    Rast, J. P., & Messier-Solek, C. (2008). Marine invertebrate genome sequences and our evolving understanding of animal immunity. Biological Bulletin, 214(3), 274–283.CrossRefGoogle Scholar
  20. 20.
    Smith, L. C. (2012). Innate immune complexity in the purple sea urchin: diversity of the Sp185/333 system. Frontiers in Immunology, 3, 70.Google Scholar
  21. 21.
    Cregg, J. M., Vedvick, T. S., & Raschke, W. C. (1993). Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology, 11(8), 905–910.Google Scholar
  22. 22.
    Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22(4), 249–270.CrossRefGoogle Scholar
  23. 23.
    Daly, R., & Hearn, M. T. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 18(2), 119–138.CrossRefGoogle Scholar
  24. 24.
    Supungul, P., Rimphanitchayakit, V., Aoki, T., Hirono, I., & Tassanakajon, A. (2010). Molecular characterization and expression analysis of a c-type and two novel muramidase-deficient i-type lysozymes from Penaeus monodon. Fish & Shellfish Immunology, 28(3), 490–498.CrossRefGoogle Scholar
  25. 25.
    Narmadha, G., & Yenugu, S. (2016). In silico and biochemical characterization of lysozyme-like proteins in the rat. PLoS One, 11(9), e0161909.CrossRefGoogle Scholar
  26. 26.
    Tu, Q., Cameron, R. A., Worley, K. C., Gibbs, R. A., & Davidson, E. H. (2012). Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Research, 22, 2079–2087.CrossRefGoogle Scholar
  27. 27.
    Peregrino-Uriarte, A. B., Muhlia-Almazan, A. T., Arvizu-Flores, A. A., Gomez-Anduro, G., Gollas-Galvan, T., Yepiz-Plascencia, G., & Sotelo-Mundo, R. R. (2012). Shrimp invertebrate lysozyme i-lyz: gene structure, molecular model and response of c and i lysozymes to lipopolysaccharide (LPS). Fish & Shellfish Immunology, 32(1), 230–236.CrossRefGoogle Scholar
  28. 28.
    Chen, T., Ren, C., Wang, Y., Luo, P., Jiang, X., Huang, W., Chen, C., & Hu, C. (2016). Molecular cloning, inducible expression and antibacterial analysis of a novel i-type lysozyme (lyz-i2) in Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 54, 197–203.CrossRefGoogle Scholar
  29. 29.
    Cong, L., Yang, X., Wang, X., Tada, M., Lu, M., Liu, H., et al. (2009). Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus, and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein. Journal of Bioscience and Bioengineering, 107(6), 583–588.CrossRefGoogle Scholar
  30. 30.
    Takeshita, K., Hashimoto, Y., Ueda, T., & Imoto, T. (2003). A small chimerically bifunctional monomeric protein: Tapes japonica lysozyme. Cellular and Molecular Life Sciences, 60(9), 1944–1951.CrossRefGoogle Scholar
  31. 31.
    Yue, X., Liu, B., & Xue, Q. (2011). An i-type lysozyme from the Asiatic hard clam Meretrix meretrix potentially functioning in host immunity. Fish & Shellfish Immunology, 30(2), 550–558.CrossRefGoogle Scholar
  32. 32.
    Xue, Q. G., Itoh, N., Schey, K. L., Li, Y. L., Cooper, R. K., & La Peyre, J. F. (2007). A new lysozyme from the eastern oyster (Crassostrea virginica) indicates adaptive evolution of i-type lysozymes. Cellular and Molecular Life Sciences, 64(1), 82–95.CrossRefGoogle Scholar
  33. 33.
    Zhang, H. W., Sun, C., Sun, S. S., Zhao, X. F., & Wang, J. X. (2010). Functional analysis of two invertebrate-type lysozymes from red swamp crayfish, Procambarus clarkii. Fish & Shellfish Immunology, 29(6), 1066–1072.CrossRefGoogle Scholar
  34. 34.
    Jahic, M., Veide, A., Charoenrat, T., Teeri, T., & Enfors, S. O. (2006). Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnology Progress, 22(6), 1465–1473.CrossRefGoogle Scholar
  35. 35.
    Gu, L., Zhang, J., Liu, B., Du, G., & Chen, J. (2015). High-level extracellular production of glucose oxidase by recombinant Pichia pastoris using a combined strategy. Applied Biochemistry and Biotechnology, 175, 1429–1447.CrossRefGoogle Scholar
  36. 36.
    Thammasirirak, S., Torikata, T., Takami, K., Murata, K., & Araki, T. (2001). Purification and characterization of goose type lysozyme from cassowary (Casuarius casuarius) egg white. Bioscience Biotechnology and Biochemistry, 65(3), 584–592.CrossRefGoogle Scholar
  37. 37.
    Kale, S., & Lali, A. (2011). Characterization of superporous cellulose matrix for high-throughput adsorptive purification of lysozyme. Biotechnology Progress, 27(4), 1078–1090.CrossRefGoogle Scholar
  38. 38.
    Wang, X., Dong, S., & Bai, Q. (2014). Preparation of lysozyme molecularly imprinted polymers and purification of lysozyme from egg white. Biomedical Chromatography, 28(6), 907–912.CrossRefGoogle Scholar
  39. 39.
    Bayramoglu, G., Tekinay, T., Ozalp, V. C., & Arica, M. Y. (2015). Fibrous polymer grafted magnetic chitosan beads with strong poly (cation-exchange) groups for single step purification of lysozyme. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 990, 84–95.CrossRefGoogle Scholar
  40. 40.
    Wu, H., Cao, D., Liu, T., Zhao, J., Hu, X., & Li, N. (2015). Purification and characterization of recombinant human lysozyme from eggs of transgenic chickens. PLoS One, 10, e0146032.CrossRefGoogle Scholar
  41. 41.
    Roy, I., Rao, M. V., & Gupta, M. N. (2003). Purification of lysozyme from other hen’s-egg-white proteins using metal-affinity precipitation. Biotechnology and Applied Biochemistry, 37(1), 9–14.CrossRefGoogle Scholar
  42. 42.
    Boto, R. E., Anyanwu, U., Sousa, F., Almeida, P., & Queiroz, J. A. (2009). Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model. Biomedical Chromatography, 23(9), 987–993.CrossRefGoogle Scholar
  43. 43.
    Lamppa, J. W., Tanyos, S. A., & Griswold, K. E. (2013). Engineering Escherichia coli for soluble expression and single step purification of active human lysozyme. Journal of Biotechnoloy, 164(1), 1–8.CrossRefGoogle Scholar
  44. 44.
    Mól, P. C., Veríssimo, L. A., Eller, M. R., Minim, V. P., & Minim, L. A. (2017). Development of an affinity cryogel for one step purification of lysozyme from chicken egg white. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1044–1045, 17–23.CrossRefGoogle Scholar
  45. 45.
    Başar, N., Uzun, L., Güner, A., & Denizli, A. (2007). Lysozyme purification with dye-affinity beads under magnetic field. International Journal of Biological Macromolecules, 41(3), 234–242.CrossRefGoogle Scholar
  46. 46.
    Mai, W. J., & Hu, C. Q. (2009). Molecular cloning, characterization, expression and antibacterial analysis of a lysozyme homologue from Fenneropenaeus merguiensis. Molecular Biology Reports, 36(6), 1587–1595.CrossRefGoogle Scholar
  47. 47.
    Zavalova, L., Lukyanov, S., Baskova, I., Snezhkov, E., Akopov, S., Berezhnoy, S., Bogdanova, E., Barsova, E., & Sverdlov, E. D. (1996). Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endoepsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots. Molecular Genetics and Genomics, 253(1-2), 20–25.CrossRefGoogle Scholar
  48. 48.
    Karthik, V., Kamalakannan, V., Thomas, A., Sudheer, N. S., Singh, I. S., & Narayanan, R. B. (2014). Functional characterization of a c-type lysozyme from Indian shrimp Fenneropenaeus indicus. Probiotics and Antimicrobial Proteins, 6(2), 114–121.CrossRefGoogle Scholar
  49. 49.
    Jones, M. E., Draghi, D. C., Thornsberry, C., Karlowsky, J. A., Sahm, D. F., & Wenzel, R. P. (2004). Emerging resistance among bacterial pathogens in the intensive care unit—a European and North American Surveillance study (2000–2002). Annals of Clinical Microbiology and Antimicrobials, 3(1), 14–24.CrossRefGoogle Scholar
  50. 50.
    Matsumoto, T., Nakamura, A. M., & Takahashi, K. G. (2006). Cloning of cDNAs and hybridization analysis of lysozymes from two oyster species, Crassostrea gigas and Ostrea edulis. Comparative Biochemistry and Physiology B-Biochemistry & Molecular biology, 145(3-4), 325–330.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Clinical MedicineShanghai University of Medicine and Health SciencesShanghaiChina
  2. 2.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations