Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 425–442 | Cite as

Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium

  • Tahmina Hossain
  • Abdul Bathen Miah
  • Siraje Arif Mahmud
  • Abdullah-Al- Mahin


In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH2PO4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.


Bioethanol Consolidated bioprocessing Wickerhamia sp. Plackett-Burman design Response surface methodology 



Greenhouse gas


Consolidated bioprocessing


Plackett-Burman design


Response surface modeling


Analysis of variance


Potato peel waste



We thank Md. Kamruzzaman Pramanik and Tabassum Mumtaz from the Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari Savar Dhaka, Bangladesh, for providing suggestion for the operation of the bioreactor.

Authors’ Contributions

Abdullah-Al- Mahin designed the whole study; Tahmina Hossain and Abdul Bathen Miah performed the experiments; and Tahmina Hossain, Siraje Arif Mahmud, and Abdullah-Al- Mahin drafted the manuscript and analyzed the results.


This work was not supported by any funding.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.


  1. 1.
    Rathore, D., Nizami, A. S., Singh, A., & Pant, D. (2016). Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Research Journal, 3(2), 380–393.CrossRefGoogle Scholar
  2. 2.
    Ali, S. S., Nugent, B., Mullins, E., & Doohan, F. M. (2016). Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express, 6, 1.CrossRefGoogle Scholar
  3. 3.
    Aruna, A., Nagavalli, M., Girijashankar, V., Ponamgi, S. P. D., Swathisree, V., & Venkateswar Rao, L. (2015). Direct bioethanol production by amylolytic yeast Candida albicans. Letters in Applied Microbiology, 60(3), 229–236.CrossRefGoogle Scholar
  4. 4.
    Tanimura, A., Kikukawa, M., Yamaguchi, S., Kishino, S., Ogawa, J., & Shima, J. (2015). Direct ethanol production from starch using a natural isolate, Scheffersomycesshehatae: toward consolidated bioprocessing. Scientific Reports, 5(1), 9593.CrossRefGoogle Scholar
  5. 5.
    Renewable Fuels Association (2016), Global ethanol production by country or region, from 2007 to 2015. Available at: Accessed 1, Mar 2016.
  6. 6.
    Morales, M., Quintero, J., Conejeros, R., & Aroca, G. (2015). Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renewable Sustainable Energy Reviews, 42, 1349–1361.CrossRefGoogle Scholar
  7. 7.
    Bentsen, N. S., Felby, C., & Thorsen, B. J. (2014). Agricultural residue production and potentials for energy and materials services. Progress in Energy and Combustion Science, 40, 59–73.CrossRefGoogle Scholar
  8. 8.
    The Financial Express, (2016), Potato production in Bangladesh hits all time-high, available at: Accessed 31, Aug 2016.
  9. 9.
    Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science and Technology, 12(11), 401–413.CrossRefGoogle Scholar
  10. 10.
    Arapoglou, D., Varzakas, T., Vlyssides, A., & Israilides, C. (2010). Ethanol production from potato peel waste (PPW). Waste Management, 30(10), 1898–1902.CrossRefGoogle Scholar
  11. 11.
    Goto, M., Semimaru, T., Furukawa, K., & Hayashida, S. (1994). Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillusawamori var. kawachiexpressed in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 60, 3926–3930.Google Scholar
  12. 12.
    Yamada, R., Bito, Y., Adachi, T., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2009). Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme and Microbial Technology, 44(5), 344–349.CrossRefGoogle Scholar
  13. 13.
    Favaro, L. J., Basaglia, T., Rose, M., Saayman, S. H., Görgens, M., Van, J. F., & Zyl, W. H. (2013). Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol. Bioengineered, 4(2), 97–102.CrossRefGoogle Scholar
  14. 14.
    Parisutham, V., Kim, T. H., & Lee, S. K. (2014). Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresource Technology, 161, 431–440.CrossRefGoogle Scholar
  15. 15.
    Snow, A. A., Andow, D. A., Gepts, P., Hallerman, E. M., Power, A., Tiedje, J. M., & Wolfenbarger, L. L. (2005). Genetically engineered organisms and the environment: current status and recommendations. Ecological Applications, 15(2), 377–404.CrossRefGoogle Scholar
  16. 16.
    Tamis, W. L. M., Van Dommelen, A., & De Snoo, G. R. (2009). Lack of transparency on environmental risks of genetically modified micro-organisms in industrial biotechnology. Journal of Cleaner Production, 17(6), 581–592.CrossRefGoogle Scholar
  17. 17.
    Plackett, R. L., & Burman, J. P. (1946). Design of optimum multifactorial experiments. Biometrika, 33(4), 305–325.CrossRefGoogle Scholar
  18. 18.
    Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475.CrossRefGoogle Scholar
  19. 19.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  20. 20.
    Joint FAO/WHO Expert Committee on Food Additives (2011) Compendium of food additive specifications, FAO JECFA Monographs 11, Rome.Google Scholar
  21. 21.
    Kurtzman, C. P., & Robnett, C. J. (1997). Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5'end of the large-subunit (26S) ribosomal DNA gene. Journal of Clinical Microbiology, 35(5), 1216–1223.Google Scholar
  22. 22.
    Ristaino, J. B., Madritch, M., Trout, C. L., & Parra, G. (1998). PCR amplification of ribosomal DNA for species identification in the plant pathogen genusPhytophthora. Applied and Environmental Microbiology, 64(3), 948–954.Google Scholar
  23. 23.
    Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461–2470.CrossRefGoogle Scholar
  24. 24.
    Seo, H. B., Kim, H. J., Lee, O. K., Ha, J. H., Lee, H. Y., & Jung, K. H. (2009). Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. Journal of Industrial Microbiology and Biotechnology, 36(2), 285–292.CrossRefGoogle Scholar
  25. 25.
    Chow, P. S., & Landhäusser, S. M. (2004). A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology, 24(10), 1129–1136.CrossRefGoogle Scholar
  26. 26.
    Jones Jr., J. B. (1991). Kjeldahl method for nitrogen determination. Athens: Micro-Macro Publishing.Google Scholar
  27. 27.
    Izmirlioglu, G., & Demirci, A. (2015). Enhanced bio-ethanol production from industrial potato waste by statistical medium optimization. International Journal of Molecular Science, 16(10), 24490–24505.CrossRefGoogle Scholar
  28. 28.
    Okamoto, K., Uchii, A., Kanawaku, R., & Yanase, H. (2014). Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springer Plus, 3, 1.CrossRefGoogle Scholar
  29. 29.
    Okamoto, K., Nitta, Y., Maekawa, N., & Yanase, H. (2011). Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trameteshirsuta. Enzyme and Microbial Technology, 48(3), 273–277.CrossRefGoogle Scholar
  30. 30.
    Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., & Kondo, A. (2004). Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplayingglucoamylase and α-amylase. Applied and Environmental Microbiology, 70(8), 5037–5040.CrossRefGoogle Scholar
  31. 31.
    Kondo, A., Shigechi, H., Abe, M., Uyama, K., Matsumoto, T., Takahashi, S., & Fukuda, H. (2002). High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Applied Microbiology and Biotechnology, 58(3), 291–296.CrossRefGoogle Scholar
  32. 32.
    Kim, J. H., Kim, H. R., Lim, M. H., Ko, H. M., Chin, J. E., Lee, H. B., & Bai, S. (2010). Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnology Letters, 32(5), 713–719.CrossRefGoogle Scholar
  33. 33.
    Liao, B., Hill, G. A., & Roesler, W. J. (2012). Stable expression of barley α-amylase in S. cerevisiae for conversion of starch into bioethanol. Biochemical Engineering Journal, 64, 8–16.CrossRefGoogle Scholar
  34. 34.
    Kosugi, A., Kondo, A., Ueda, M., Murata, Y., Vaithanomsat, P., Thanapase, W., & Mori, Y. (2009). Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy, 34(5), 1354–1358.CrossRefGoogle Scholar
  35. 35.
    Hernández-Montañez, Z., Juárez-Montiel, M., Velázquez-Ávila, M., Cristiani-Urbina, E., Hernández-Rodríguez, C., Villa-Tanaca, L., & Chávez-Camarillo, G. (2012). Production and characterization of extracellular α-amylase produced by Wickerhamia sp. X-Fep. Applied Biochemistry and Biotechnology, 167(7), 2117–2129.CrossRefGoogle Scholar
  36. 36.
    Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., & Laopaiboon, P. (2009). Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresource Technology, 100(18), 4176–4182.CrossRefGoogle Scholar
  37. 37.
    O’Rourke, T. (2002). Malt specifications brewing performance. The Brewer International, 2, 27–30.Google Scholar
  38. 38.
    Vilanova, M., Ugliano, M., Varela, C., Siebert, T., Pretorius, I. S., & Henschke, P. A. (2007). Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Applied Microbiology and Biotechnology, 77(1), 145–157.CrossRefGoogle Scholar
  39. 39.
    Rani, P., Sharma, S., Garg, F. C., Raj, K., & Wati, L. (2010). Ethanol production from potato flour by Saccharomyces cerevisiae. Ind Journal of Science and Technology, 3, 733–736.Google Scholar
  40. 40.
    Jones, R. P., & Greenfield, P. F. (1984). A review of yeast ionic nutrition. I: growth and fermentation requirements. Process Biochemistry, 19, 48–58.Google Scholar
  41. 41.
    Jones, R. P., Pamment, N., & Greenfield, P. F. (1981). Alcohol fermentation by yeasts-the effect of environmental and other variables. Process Biochemistry, 16, 42–49.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and Genetic EngineeringJahangirnagar UniversityDhakaBangladesh
  2. 2.Microbiology and Industrial Irradiation Division, Institute of Food and Radiation BiologyAtomic Energy Research EstablishmentDhakaBangladesh

Personalised recommendations