Skip to main content

Advertisement

Log in

Effect of Enzymatic Digestion of Protein Derivatives Obtained from Mucuna pruriens L. on Production of Proinflammatory Mediators by BALB/c Mouse Macrophages

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inflammation is considered to be a major risk factor for the pathogenesis of chronic non-communicable diseases. Macrophages are important immune cells, which regulate inflammation and host defense by secretion of proinflammatory mediators. Obtaining biopeptides by enzymatic hydrolysis adds value to proteins of vegetative origin, such as Mucuna pruriens L. The present study evaluated the effect of enzymatic digestion of protein derivatives obtained from M. pruriens L. on the production of proinflammatory mediators by BALB/c mouse macrophages. Five different molecular weight peptide fractions were obtained (F > 10, 5–10, 3–5, 1–3, and < 1 kDa, respectively). At 300 μg/mL, F5–10 kDa inhibited 50.26 and 61.00% NO and H2O2 production, respectively. Moreover, F5–10 kDa reduced the IL-6 and TNFα levels to 60.25 and 69.54%, respectively. After enzymatic digestive simulation, F5–10 kDa decreased the inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Segura Campos, M., Chel, L., & Betancur, D. (2013). Bioactividad de péptidos derivados de proteínas alimentarias. Barcelona: Omnia Science.

    Book  Google Scholar 

  2. Herrera, F., Ruiz, J., Acevedo, J., Betancur, & Segura, M. (2014). ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochemistry, 49, 1691–1698.

    Article  Google Scholar 

  3. Herrera, F., Ruiz, J., Betancur, D., & Segura, M. (2016). Potential therapeutic applications of Mucuna pruriens peptide fractions purified by high-performance liquid chromatography as angiotensin-converting enzyme inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents. Journal of Medicinal Food, 19(2), 187–195.

    Article  Google Scholar 

  4. Hirota, T., Nonaka, A., Matsushita, A., Uchida, N., Ohki, K., Asakura, M., & Kitakaze, M. (2011). Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart and Vessels, 26(5), 549–556.

    Article  Google Scholar 

  5. Kovacs-Nolan, J., Zhang, H., Ibuki, M., Nakamori, T., Yoshiura, K., Turner, P. V., Matsui, T., & Mine, Y. (2012). The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochimica et Biophysica Acta, 1820(11), 1753–1763.

    Article  CAS  Google Scholar 

  6. Mochizuki, M., Shigemura, H., & Hasegawa, N. (2010). Anti-inflammatory effect of enzymatic hydrolysate of corn gluten in an experimental model of colitis. Journal of Pharmacy and Pharmacology, 62(3), 389–392.

    Article  CAS  Google Scholar 

  7. Joshi, I., Sudhakar, S., & Nazeer, R. (2016). Anti-inflammatory properties of bioactive peptide derived from gastropod influenced by enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 180(6), 1128–1140. https://doi.org/10.1007/s12010-016-2156-y.

    Article  CAS  PubMed  Google Scholar 

  8. Kong, F., & Singh, R. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 76, E627–E635.

    Article  Google Scholar 

  9. Segura-Campos, M., Chel, L., & Betancur, D. (2010). Effect of digestion on the bioavailability of peptides with biological activity. Revista Chilena de Nutrición, 37, 386–391.

    Article  Google Scholar 

  10. Hassan, H., & El-Gharib, N. (2014). Obesity and clinical riskiness relationship: therapeutic management by dietary antioxidant supplementation—a review. Applied Biochemistry and Biotechnology, 176(3), 647–669. https://doi.org/10.1007/s12010-015-1602-6.

    Article  CAS  Google Scholar 

  11. Abarikwu, S. O. (2014). Kolaviron, a natural flavonoid from the seeds of Garcinia kola, reduces LPS-induced inflammation in macrophages by combined inhibition of IL-6 secretion, and inflammatory transcription factors, ERK1/2, NF-kappaB, p38, Akt, p-c-JUN and JNK. Biochimica et Biophysica Acta, 1840(7), 2373–2381.

    Article  CAS  Google Scholar 

  12. Buckley, C., Gilroy, D., & Serhan, C. (2014). Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity, 40(3), 315–327.

    Article  CAS  Google Scholar 

  13. Kumar, S., Meena, R., & Paulraj, R. (2016). Role of macrophage (M1 and M2) in titanium-dioxide nanoparticle-induced oxidative stress and inflammatory response in rat. Applied Biochemistry and Biotechnology, 180(7), 1257–1275. https://doi.org/10.1007/s12010-016-2165-x.

    Article  CAS  PubMed  Google Scholar 

  14. Solini, A. M., Stignani, E., Melchiorri, M., Santini, L., Rossi, E., & al, C. e. (2010). Soluble human leukocyte antigen-g expression and glucose tolerance in subjects with different degrees of adiposity. Journal of Clinical Endocrinology & Metabolism, 95(7), 3342–3346.

    Article  CAS  Google Scholar 

  15. Cho, M. J., Unklesbay, N., Hsieh, F., & Clarke, A. D. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 52(19), 5895–5901.

    Article  CAS  Google Scholar 

  16. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13), 1107–1112.

    Article  CAS  Google Scholar 

  17. Gómez, R., Hernández, H., Tamez, P., Tamez, R., Quintanilla, R., Monreal, E., & Rodríguez, C. (2010). Antitumor and immunomodulating potencial of Coriandrum sativum, Piper nigrum and Cinnamomum zeylanicum. Journal Natural Products, 3, 54–63.

    Google Scholar 

  18. HANNA Instruments. HI 3844 Test Kit de Peróxido de Hidrógeno.

  19. ELISA technical guide and protocols TR0065, 0. TECH TIP #65. Thermo scientific. 2010 Thermo Fisher Scientific Inc.

  20. Hur, S., Lim, B., Decker, E., & Mcclements, D. (2011). In vitro human digestion models for food applications. A review. Food Chemistry, 125(1), 1–12.

    Article  CAS  Google Scholar 

  21. Cu, T., Betancur, D., Gallegos, S., Sandoval, M., & Chel, L. (2015). Studies in vitro inhibition of the angiotensin-converting enzyme-I, hypotensive and antihypertensive effects of peptide fractions of V. unguiculata. Nutrición Hospitalaria, 32, 2117–2125.

    Google Scholar 

  22. Zhang, M., & Sun, M. (2014). Purification and identification of antioxidant peptides from Phaseolus vulgaris protein hydrolysates by pepsin-pancreatin. Journal Functional Food, 10, 191–200.

    Article  Google Scholar 

  23. Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., He, H. L., & Li, H. (2015). Overview of antioxidant peptides derived from marine resources: the sources, characteristic, purification, and evaluation methods. Applied Biochemistry and Biotechnology, 176(7), 1815–1833. https://doi.org/10.1007/s12010-015-1689-9.

    Article  CAS  PubMed  Google Scholar 

  24. Laua, F., Josepha, J., McDonaldb, J., & Kalt, W. (2010). Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-κB activation. Journal of Functional Foods, 1, 274–283.

    Article  Google Scholar 

  25. Dia, V., Bringe, N., & Mejia, E. (2014). Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chemistry, 152, 423–431.

    Article  CAS  Google Scholar 

  26. Bum Ahn, C., Je, J., & Cho, Y. (2012). Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49, 92–98.

    Article  Google Scholar 

  27. Kim, Y., Ahn, C., & Je, J. (2016). Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chemistry, 202, 9–14.

    Article  CAS  Google Scholar 

  28. Wink, D. A., Nims, R. W., Darbyshire, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. C., DeGraff, W. G., & Mitchell, J. B. (1994). Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chemical Research & Toxicology, 7(4), 519–525.

    Article  CAS  Google Scholar 

  29. Udenigwe, C. C., Je, J. Y., Cho, Y. S., & Yada, R. Y. (2013). Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food & Function, 4(5), 777–783.

    Article  CAS  Google Scholar 

  30. Moronta, J., Smaldini, P., Docena, G., & Añón, M. (2016). Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. Journal of Functional Foods, 21, 463–473.

    Article  CAS  Google Scholar 

  31. González, E., & Día, V. (2009). Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides, 30, 2388–2398.

    Article  Google Scholar 

  32. Aktan, F. (2004). iNOS-mediated nitric oxide production and its regulation. Life Sciences, 75(6), 639–653.

    Article  CAS  Google Scholar 

  33. López, L., Antunes, M., & Gutiérrez, J. (2016). Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chemistry, 203, 417–424.

    Article  Google Scholar 

  34. Besingi, R., & Clark, R. (2015). Extracellular protease digestion to evaluate membrane protein cell surface localization. Nature Protocols, 10(12), 2074–2080.

    Article  CAS  Google Scholar 

  35. Martínez, E., Avecedo, J., & Segura, M. (2016). Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomedicine & Pharmacotherapy, 83, 816–826.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is part of the “Scientific Research Development Directed to develop Protein Derivative of Mucuna pruriens with Potential Biological Activity for Prevention and / or Treatment of Chronic Diseases Associated with Overweight and Obesity” project funded by CONACYT-Mexico (Project 154307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maira R. Segura Campos.

Ethics declarations

Conflict of Interest

The authors declare they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Leo, E.E., Arana Argáez, V.E., Acevedo Fernández, J.J. et al. Effect of Enzymatic Digestion of Protein Derivatives Obtained from Mucuna pruriens L. on Production of Proinflammatory Mediators by BALB/c Mouse Macrophages. Appl Biochem Biotechnol 186, 597–612 (2018). https://doi.org/10.1007/s12010-018-2740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2740-4

Keywords

Navigation