Skip to main content
Log in

Efficient Biotransformation of Phytosterols to Dehydroepiandrosterone by Mycobacterium sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a method for the efficient production of dehydroepiandrosterone (DHEA) from phytosterols in a vegetable oil/aqueous two-phase system by Mycobacterium sp. was developed. After the 3-hydroxyl group of phytosterols was protected, they could be converted into DHEA with high yield and productivity by Mycobacterium sp. NRRL B-3683. In a shake flask biotransformation, 15.05 g l−1 of DHEA and a DHEA yield of 85.39% (mol mol−1) were attained after 7 days with an initial substrate concentration of 25 g l−1. When biotransformation was carried out in a 30-l stirred bioreactor with 25 g l−1 substrate, the DHEA concentration and yield was 16.33 g l−1 and 92.65% (mol mol−1) after 7 days, respectively. The results of this study suggest that inexpensive phytosterols could be utilized for the efficient production of DHEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zuidena, M., Haverkorta, S. Q., Tan, Z., Daamsc, J., Loka, A., & Olffad, M. (2017). DHEA and DHEA-S levels in posttraumatic stress disorder: a meta-analytic review. Psychoneuroendocrinology, 84, 76–82.

    Article  CAS  Google Scholar 

  2. Mascotti, M. L., Palazzolo, M. A., Bisogno, F. R., & Kurina-Sanz, M. (2016). Biotransformation of dehydro-epi-androsterone by Aspergillus parasiticus: metabolic evidences of BVMO activity. Steroids, 109, 44–49.

    Article  CAS  PubMed  Google Scholar 

  3. Stárka, L., Dušková, M., & Hill, M. (2015). Dehydroepiandrosterone: a neuroactive steroid. The Journal of Steroid Biochemistry and Molecular Biology, 145, 254–260.

    Article  CAS  PubMed  Google Scholar 

  4. Shealy, C. N. (1995). A review of dehydroepiandrosterone (DHEA). Integrative Physiological and Behavioral Science, 30(4), 308–313.

    Article  CAS  PubMed  Google Scholar 

  5. Campi, B., Frascarelli, S., Pietri, E., Massa, I., Donati, C., Bozic, R., Bertelloni, S., Paolicchi, A., Zucchi, R., & Saba, A. (2018). Quantification of dehydroepiandrosterone in human serum on a routine basis: development and validation of a tandem mass spectrometry method based on a surrogate analyte. Analytical and Bioanalytical Chemistry, 410(2), 407–416.

    Article  CAS  PubMed  Google Scholar 

  6. Garrido, M., Bratoeff, E., Garcia-Lorenzana, M., Heuze, Y., Soriano, J., Valencia, N., Cortes, F., & Cabeza, M. (2013). Biological evaluation of androstene derivatives. Archiv der Pharmazie, 346(1), 62–70.

    Article  CAS  PubMed  Google Scholar 

  7. Tong, W. Y., & Dong, X. (2009). Microbial biotransformation: recent developments on steroid drugs. Recent Patents on Biotechnology, 3(2), 141–153.

    Article  CAS  PubMed  Google Scholar 

  8. Bahrke, M. S., & Yesalis, C. E. (2004). Abuse of anabolic androgenic steroids and related substances in sport and exercise. Current Opinion in Pharmacology, 4(6), 614–620.

    Article  CAS  PubMed  Google Scholar 

  9. Pan, G. F., He, Y. J., & Xi, Z. B. (2014). Synthesis of dehydroepiandrosterone. [in Chinese] Guangdong Chemical Industry 41(12):70–70.

  10. Tamao, K., Nakajima, T., Sumiya, R., Arai, H., Higuchi, N., & Ito, Y. (1986). Stereocontrol in intramolecular hydrosilylation of allyl and homoallyl alcohols: a new approach to the stereoselective synthesis of 1, 3-diol skeletons. Journal of the American Chemical Society, 108(19), 6090–6093.

    Article  CAS  PubMed  Google Scholar 

  11. Shen, L. Q., Zuo, Q. J., & Lei, H. F. (2011). A synthetical method of dehydroepiandrosterone. [in Chinese] Chinese Patent 201110085711.X.

  12. Bhatti, H. N., & Khera, R. A. (2012). Biological transformations of steroidal compounds: a review. Steroids, 77(12), 1267–1290.

    Article  CAS  PubMed  Google Scholar 

  13. Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H., & Cabral, J. (2003). Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology, 32(6), 688–705.

    Article  CAS  Google Scholar 

  14. Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–268 Tischer.

    Article  PubMed  Google Scholar 

  15. Andrushina, V., Druzhinina, A., Yaderets, V., Stitsenko, T., & Voishvillo, N. (2011). Hydroxylation of steroids by Curvularia lunata mycelium in the presence of methyl-β-cyclodextrine. Applied Biochemistry and Microbiology, 47(1), 42–48.

    Article  CAS  Google Scholar 

  16. Perez, C., Falero, A., Hung, B. R., Tirado, S., & Balcinde, Y. (2005). Bioconversion of phytosterols to androstanes by Mycobacteria growing on sugar cane mud. Journal of Industrial Microbiology & Biotechnology, 32(3), 83–86.

    Article  CAS  Google Scholar 

  17. Donova, M. V., Dovbnya, D. V., Sukhodolskaya, G. V., Khomutov, S. M., Nikolayeva, V. M., Kwon, I., & Han, K. (2005). Microbial conversion of sterol-containing soybean oil production waste. Journal of Chemical Technology and Biotechnology, 80(1), 55–60.

    Article  CAS  Google Scholar 

  18. Malaviya, A., & Gomes, J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresource Technology, 99(15), 6725–6737.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X. Q., Meng, H., & Yang, K. A. (2012). preparation method of dehydroepiandrosterone by microbial fermentation. [in Chinese] Chinese Patent 201210316197.0.

  20. Donova, M. V. (2007). Transformation of steroids by actinobacteria: a review. Applied Biochemistry and Microbiology, 43, 5–18.

    Article  CAS  Google Scholar 

  21. Granot, I., Aharonowitz, Y., & Freeman, A. (1988). Cosolvent effect on Δ 1-steroid-reductase activity of free and PAAH entrapped Mycobacterium sp. NRRL B-3805 cells. Applied Microbiology and Biotechnology, 27(5-6), 457–463.

    Article  CAS  Google Scholar 

  22. Ahmad, S., & Johri, B. (1993). Microbial transformation of sterols in organic media. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 32, 67–69.

    Google Scholar 

  23. Flygare, S., & Larsson, P. O. (1989). Steroid transformation in aqueous two-phase systems: side-chain degradation of cholesterol by Mycobacterium sp. Enzyme and Microbial Technology, 11(11), 752–759.

    Article  CAS  Google Scholar 

  24. Wang, Z. F., Huang, Y. L., Rathman, J. F., & Yang, S. T. (2002). Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17-dione and androsta-4-ene-3,17-dione. Journal of Chemical Technology and Biotechnology, 77(12), 1349–1357.

    Article  CAS  Google Scholar 

  25. Marsheck, W. J., Kraychy, S., & Muir, R. (1972). Microbial degradation of sterols. Applied Microbiology, 23(1), 72–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zang, L., Jing, K. Q., & Liu, Y. P. (2015). Establishment of a method for the detection of dehydroepiandrosterone by microbial fermentation. [in Chinese]. Food and Fermentation Industries, 41(1), 216–219.

    Google Scholar 

  27. Xu, Y. G., Guan, Y. X., Wang, H. Q., & Yao, S. J. (2014). Microbial side-chain cleavage of phytosterols by mycobacteria in vegetable oil/aqueous two-phase system. Applied Biochemistry and Biotechnology, 174(2), 522–533.

    Article  CAS  PubMed  Google Scholar 

  28. Faller, M., Niederweis, M., & Schulz, G. E. (2004). The structure of a mycobacterial outer-membrane channel. Science, 303(5661), 1189–1192.

    Article  CAS  PubMed  Google Scholar 

  29. Shen, Y., Wang, M., Zhang, L., Ma, Y., Ma, B., Zheng, Y., Liu, H., & Luo, J. (2011). Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp. Applied Microbiology and Biotechnology, 90(6), 1995–2003.

    Article  CAS  PubMed  Google Scholar 

  30. Cruz, A., Fernandes, P., Cabral, J., & Pinheiro, H. (2001). Whole-cell bioconversion of β-sitosterol in aqueous–organic two-phase systems. Journal of Molecular Catalysis B: Enzymatic, 11(4-6), 579–585.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by grants from the Key Project of Science and Technology of Henan Province (No. 152102210255) and the Foundation for University Young Back-bone Teachers of Henan Province (No. 2014GGJS-157).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Yu-peng Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Fang, Yk., Yao, Hk. et al. Efficient Biotransformation of Phytosterols to Dehydroepiandrosterone by Mycobacterium sp.. Appl Biochem Biotechnol 186, 496–506 (2018). https://doi.org/10.1007/s12010-018-2739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2739-x

Keywords

Navigation