Skip to main content
Log in

The Effect of Pancreas Islet-Releasing Factors on the Direction of Embryonic Stem Cells Towards Pdx1 Expressing Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetes mellitus, which is the result of autoimmune destruction of the insulin-producing β cells, occurs by loss of insulin-secreting capacity. The insufficient source of insulin-producing cells (IPCs) is the major obstacle for using transplantation as diabetes treatment method. The present study suggests a method to form islet-like clusters of IPCs derived from mouse embryonic stem cells (mESCs). This protocol consists of several steps. Before starting this protocol, embryoid bodies (EBs) should be cultured in suspension in conditioned medium of isolated mouse pancreatic islet in combination with activing A to be induced. Then differentiated mESCs were replaced with dishes supplemented with basic fibroblast growth factor (bFGF). Next, bFGF was withdrawn, and cyclopamine and noggin were added. Then the cells were treated with B27, nicotinamide, and islet-conditioned medium for maturation. mESCs, as the control group, were cultured without any treatment. An enhanced expression of pancreatic-specific genes was detected by qRT-PCR and immunofluorescence in the differentiated mESCs. The differentiated mESCsco express other markers of pancreatic islet cells as well as insulin. This method exhibited higher insulin generation and further improvement in IPCs protocol that may result in an unlimited source of ES cells suitable for transplantation. The results indicated that conditioned medium, just as critical components of the stem cell niche associated with other factors, had high potential to differentiate mESCs into IPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abu Bakar Sajak, A., Mediani, A., Maulidiani, Ismail, A., & Abas, F. (2017). Metabolite variation in lean and obese streptozotocin (STZ)-induced diabetic rats via (1)H NMR-based metabolomics approach. Applied Biochemistry and Biotechnology, 182(2), 653–668.

    Article  CAS  PubMed  Google Scholar 

  2. Ballas, C. B., Zielske, S. P., & Gerson, S. L. (2002). Adult bone marrow stem cells for cell and gene therapies: implications for greater use. Journal of Cellular Biochemistry. Supplement, 38, 20–28.

    Article  CAS  PubMed  Google Scholar 

  3. Bundhun, P. K., Bhurtu, A., & Yuan, J. (2017). Impact of type 2 diabetes mellitus on the long-term mortality in patients who were treated by coronary artery bypass surgery: a systematic review and meta-analysis. Medicine, 96(22), e7022.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chang, C., Niu, D., Zhou, H., Li, F., & Gong, F. (2007). Mesenchymal stem cells contribute to insulin-producing cells upon microenvironmental manipulation in vitro. Transplantation Proceedings, 39(10), 3363–3368.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, C. Y., Cheng, Y. Y., Yen, C. Y., & Hsieh, P. C. (2017). Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cellular and Molecular Life Sciences: CMLS, 74(10), 1805–1817.

    Article  CAS  PubMed  Google Scholar 

  6. D’Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23(12), 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  7. D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., Moorman, M. A., Kroon, E., Carpenter, M. K., & Baetge, E. E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24(11), 1392–1401.

    Article  CAS  PubMed  Google Scholar 

  8. Dave, S. D., Vanikar, A. V., & Trivedi, H. L. (2013). Extrinsic factors promoting in vitro differentiation of insulin-secreting cells from human adipose tissue-derived mesenchymal stem cells. Applied Biochemistry and Biotechnology, 170(4), 962–971.

    Article  CAS  PubMed  Google Scholar 

  9. De Felici, M., Farini, D., & Dolci, S. (2009). In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells. Current Stem Cell Research & Therapy, 4(2), 87–97.

    Article  Google Scholar 

  10. Ebrahimi-Barough, S., Hoveizi, E., Norouzi Javidan, A., & Ai, J. (2015). Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. Journal of Biomedical Materials Research. Part A., 103(8), 2621–2627.

    Article  CAS  PubMed  Google Scholar 

  11. Elham, H., Fardin, F., & Mahmod, H. (2017). The roles of the co-culture of mEScs with pancreatic islets and liver stromal cells in the differentiation of definitive endoderm cells. Biologicals: Journal of the International Association of Biological Standardization, 45, 9–14.

    Article  CAS  Google Scholar 

  12. Fujitani, Y. (2017). Transcriptional regulation of pancreas development and beta-cell function [review]. Endocrine Journal, 64(5), 477–486.

    Article  PubMed  Google Scholar 

  13. Golden, S. H., Maruthur, N., Mathioudakis, N., Spanakis, E., Rubin, D., Zilbermint, M., & Hill-Briggs, F. (2017). The case for diabetes population health improvement: evidence-based programming for population outcomes in diabetes. Current Diabetes Reports, 17(7), 51.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoveizi, E., Khodadadi, S., Tavakol, S., Karima, O., & Nasiri-Khalili, M. A. (2014). Small molecules differentiate definitive endoderm from human induced pluripotent stem cells on PCL scaffold. Applied Biochemistry and Biotechnology, 173(7), 1727–1736.

    Article  CAS  PubMed  Google Scholar 

  15. Hoveizi, E., Massumi, M., Ebrahimi-barough, S., Tavakol, S., & Ai, J. (2015). Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold. Cell Biology International, 39(5), 591–599.

    Article  CAS  PubMed  Google Scholar 

  16. Hoveizi, E., Nabiuni, M., Parivar, K., Ai, J. and Massumi, M. (2013) Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold. Journal of biomedical materials research. Part A, 102, 4027–36.

  17. Jiang, J., Au, M., Lu, K., Eshpeter, A., Korbutt, G., Fisk, G., & Majumdar, A. S. (2007). Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells, 25(8), 1940–1953.

    Article  CAS  PubMed  Google Scholar 

  18. Kang, X., Xie, Y., Powell, H. M., James Lee, L., Belury, M. A., Lannutti, J. J., & Kniss, D. A. (2007). Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 28(3), 450–458.

    Article  CAS  PubMed  Google Scholar 

  19. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., Young, H., Richardson, M., Smart, N. G., Cunningham, J., Agulnick, A. D., D’Amour, K. A., Carpenter, M. K., & Baetge, E. E. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26(4), 443–452.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J., Han, D. J., & Kim, S. C. (2008). In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochemical and Biophysical Research Communications, 375(4), 547–551.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S. H., Park, M. H., Park, S. J., Kim, J., Kim, Y. T., Oh, M. C., Jeong, Y., Kim, M., Han, J. S., & Jeon, Y. J. (2012). Bioactive compounds extracted from Ecklonia cava by using enzymatic hydrolysis protects high glucose-induced damage in INS-1 pancreatic beta-cells. Applied Biochemistry and Biotechnology, 167(7), 1973–1985.

    Article  CAS  PubMed  Google Scholar 

  22. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., & McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292(5520), 1389–1394.

    Article  CAS  PubMed  Google Scholar 

  23. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., & Melton, D. A. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15768–15773.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Massumi, M., Hoveizi, E., Baktash, P., Hooti, A., Ghazizadeh, L., Nadri, S., Pourasgari, F., Hajarizadeh, A., Soleimani, M., Nabiuni, M., & Khorramizadeh, M. R. (2014). Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Experimental Cell Research, 322(1), 51–61.

    Article  CAS  PubMed  Google Scholar 

  25. McLean, A. B., D’Amour, K. A., Jones, K. L., Krishnamoorthy, M., Kulik, M. J., Reynolds, D. M., Sheppard, A. M., Liu, H., Xu, Y., Baetge, E. E., & Dalton, S. (2007). Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells, 25(1), 29–38.

    Article  CAS  PubMed  Google Scholar 

  26. Mfopou, J. K., Chen, B., Mateizel, I., Sermon, K., & Bouwens, L. (2010). Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology, 138, 2233–2245 2245 e2231–2214.

    Article  CAS  PubMed  Google Scholar 

  27. Ni, Z., Zhang, Y., Wang, H., Wei, Y., Ma, B., Hao, J., Tu, P., Duan, H., Li, X., Jiang, P., Ma, X., Wang, B., Wu, R., Zhu, J., & Li, M. (2016). Construction of a fusion peptide 5rolGLP-HV and analysis of its therapeutic effect on type 2 diabetes mellitus and thrombosis in mice. Applied Biochemistry and Biotechnology, 179(1), 59–74.

    Article  CAS  PubMed  Google Scholar 

  28. Prince, V. E., Anderson, R. M., & Dalgin, G. (2017). Zebrafish pancreas development and regeneration: fishing for diabetes therapies. Current Topics in Developmental Biology, 124, 235–276.

    Article  PubMed  Google Scholar 

  29. Shaer, A., Azarpira, N., & Karimi, M. H. (2014). Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection. Applied Biochemistry and Biotechnology, 174(1), 242–258.

    Article  CAS  PubMed  Google Scholar 

  30. Sherwood, R. I., Jitianu, C., Cleaver, O., Shaywitz, D. A., Lamenzo, J. O., Chen, A. E., Golub, T. R., & Melton, D. A. (2007). Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Developmental Biology, 304(2), 541–555.

    Article  CAS  PubMed  Google Scholar 

  31. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., & Martin, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49(2), 157–162.

    Article  CAS  PubMed  Google Scholar 

  32. Spaeth, J. M., Walker, E. M., & Stein, R. (2016). Impact of Pdx1-associated chromatin modifiers on islet beta-cells. Diabetes, Obesity & Metabolism, 18(Suppl 1), 123–127.

    Article  CAS  Google Scholar 

  33. Wang, Z., & Huang, J. (2014). Neuregulin-1 increases connexin-40 and connexin-45 expression in embryonic stem cell-derived cardiomyocytes. Applied Biochemistry and Biotechnology, 174(2), 483–493.

    Article  CAS  PubMed  Google Scholar 

  34. Yang, J., Wu, C., Stefanescu, I. and Horowitz, A. (2017) Analysis of Retinoic Acid-induced Neural Differentiation of Mouse Embryonic Stem Cells in Two and Three-dimensional Embryoid Bodies. Journal of visualized experiments, https://doi.org/10.3791/55621.

  35. Zhou, G., Chiu, D., Qin, D., Niu, L., Cai, J., He, L., Huang, W., & Xu, K. (2012). Detection and clinical significance of CD44v6 and integrin-beta1 in pancreatic cancer patients using a triplex real-time RT-PCR assay. Applied Biochemistry and Biotechnology, 167(8), 2257–2268.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, R., Liu, H., Liu, C., Wang, L., Ma, R., Chen, B., Li, L., Niu, J., Fu, M., Zhang, D. and Gao, S. (2017) Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacological research, 122, 78–89.

Download references

Funding

This study was financially supported by the vice chancellor of research affairs of Ahvaz Jondishapur University of Medical Science, Cellular and Molecular Research Center, Grant No: CMRC-9415 and Iranian Stem Cell Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashemitabar Mahmoud.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elham, H., Mahmoud, H. The Effect of Pancreas Islet-Releasing Factors on the Direction of Embryonic Stem Cells Towards Pdx1 Expressing Cells. Appl Biochem Biotechnol 186, 371–383 (2018). https://doi.org/10.1007/s12010-018-2733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2733-3

Keywords

Navigation