Skip to main content
Log in

Site-Directed Mutagenesis of Cytochrome P450 2D6 and 2C19 Enzymes: Expression and Spectral Characterization of Naturally Occurring Allelic Variants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Genetic polymorphism of the cytochrome P450 (CYP) genes particularly affects CYP2D6 and CYP2C19 to a functionally relevant extent, and it is therefore crucial to elucidate the enzyme kinetic and molecular basis for altered catalytic activity of these allelic variants. This study explored the expression and function of the reported alleles CYP2D6*2, CYP2D6*10, CYP2D6*17, CYP2C19*23, CYP2C19*24, and CYP2C19*25 with respect to gene polymorphisms. Site-directed mutagenesis (SDM) was carried out to generate these six alleles. After DNA sequencing, the CYP2D6 and CYP2C19 wild types alongside with their alleles were each independently co-expressed with NADPH-CYP oxidoreductase (OxR) in Escherichia coli. The expressed proteins were analyzed using Western blotting, reduced carbon monoxide (CO) difference spectral scanning, and cytochrome c reductase assay. Results from Western blot revealed the presence of all CYP wild-type and allelic proteins in E. coli membrane fractions. The reduced CO difference spectra scanning presented the distinct peak of absorbance at 450 nm, and the cytochrome c reductase assay has confirmed that spectrally active OxR was expressed in each protein preparation. As a conclusion, the results obtained from this study have proven the CYP variants to be immunoreactive and spectrally active and are suitable for use to examine biotransformation and interaction mechanism of the enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang, G. W., & Kam, P. C. A. (1999). The physiological and pharmacological roles of cytochrome P450 isoenzymes. Anaesthesia, 54(1), 42–50.

    Article  CAS  PubMed  Google Scholar 

  2. Rowland, P., Blaney, F. E., Smyth, M. G., Jones, J. J., Leydon, V. R., Oxbrow, A. K., Lewis, C. J., Tennant, M. G., Modi, S., Eggleston, D. S., Chenery, R. J., & Bridges, A. M. (2006). Crystal structure of human cytochrome P450 2D6. Journal of Biological Chemistry, 281(11), 7614–7622.

    Article  CAS  PubMed  Google Scholar 

  3. Abraham, B. K., & Adithan, C. (2001). Genetic polymorphism of CYP2D6. Indian Journal of Pharmacology, 33, 147–169.

    CAS  Google Scholar 

  4. Ingelman-Sundberg, M., Sim, S. C., Gomez, A., & Rodriquez-Antona, C. (2007). Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacolology and Therapeutics, 116(3), 496–526.

    Article  CAS  Google Scholar 

  5. Guengerich, F. P. (2010). Cytochrome P450 enzymes. In C. A. McQueen (Ed.), Comprehensive toxicology (2nd ed., pp. 41–76). Kidlington: Elsevier Ltd..

    Chapter  Google Scholar 

  6. Meyer, J. M., & Rodvold, K. A. (1996). Drug bioinformation by the cytochrome P-450 enzyme system. Infections in Medicine, 13(452), 463–464 523.

    Google Scholar 

  7. Eichelbaum, M., Ingelman-Sundberg, M., & Evans, W. E. (2006). Pharmacogenomics and individualized drug therapy. Annual Review of Medicine, 57(1), 119–137.

    Article  CAS  PubMed  Google Scholar 

  8. Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook, R. W., Gunsalus, I. C., & Nebert, D. W. (1996). The P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1, 1–42.

    Article  Google Scholar 

  9. Ingelman-Sundberg, M. (2005). Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics Journal, 5(1), 6–13.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J. F., Zhang, C. C., Chou, K. C., & Wei, D. Q. (2009). Structure of cytochrome P450s and personalized drug. Current Medicinal Chemistry, 16(2), 232–244.

    Article  CAS  PubMed  Google Scholar 

  11. Nelson, D. R., & Nebert, D. W. (2011). Cytochrome P450 (CYP) gene superfamily in eLS (pp. 1–13). Chichester: John Wiley& Sons Ltd..

    Google Scholar 

  12. Zhou, Q., Yu, X. M., Lin, H. B., Wang, L., Yun, Q. Z., Hu, S. N., & Wang, D. M. (2009). Genetic polymorphism, linkage disequilibrium, halotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics Journal, 9(6), 380–394.

    Article  CAS  PubMed  Google Scholar 

  13. Beverage, J. N., Sissung, T. M., Sion, A. D., Romano, F., & William, D. (2007). CYP2D6 polymorphisms and the impact on tamoxifen therapy. Journal of Pharmaceutical Sciences, 96(9), 2224–3221.

    Article  CAS  PubMed  Google Scholar 

  14. Carter, P. (1986). Site-directed mutagenesis. Journal of Biochemistry, 237(1), 1–7.

    Article  CAS  Google Scholar 

  15. Herlitze, S., & Koenen, M. (1990). A general and rapid mutagenesis methods using polymerase chain reaction. Gene, 91(1), 143–147.

    Article  CAS  PubMed  Google Scholar 

  16. Niwa, T., Murayama, N., & Yamazaki, H. (2011). Comparison of cytochrome P450 2D6 and variants in terms of drug oxidation rates and substrate inhibition. Current Drug Metabolism, 12(5), 412–435.

    Article  CAS  PubMed  Google Scholar 

  17. Bradford, L. D. (2002). CYP2D6 alleles frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics, 45, 229–243.

    Article  Google Scholar 

  18. Oscarson, M., Hidestrand, M., Johansson, I., & Ingelman-Sundberg, M. (1997). A combination of mutation in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Molecular Pharmacology, 52(6), 1034–1040.

    Article  CAS  PubMed  Google Scholar 

  19. Senda, C., Yamaura, Y., Kobayashi, K., Fujii, H., Minami, H., Sasaki, Y., Igarashi, T., & Chiba, K. (2001). Influence of the CYP2D6*10 allele on the metabolism of mexiletine by human liver microsomes. British Journal of Clinical Pharmacology, 52(1), 100–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanioka, N., Okumura, Y., Saito, Y., Hichiya, H., Soyama, A., Saito, K., Ueno, K., Sawada, J., & Narimatsu, S. (2006). Catalytic roles of CYP2D6.10 and CYP2D6.36 enzymes in mexiletine metabolism: in vitro functional analysis of recombinant proteins expressed in Saccharomyces cerevisiae. Biochemical Pharmacology, 71(9), 1386–1395.

    Article  CAS  PubMed  Google Scholar 

  21. Sakuyama, K., Sasaki, T., Ujiie, S., Obata, K., Mizugaki, M., Ishikawa, M., & Hiratsuka, M. (2008). Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metabolism and Disposition, 36(12), 2460–2467.

    Article  CAS  PubMed  Google Scholar 

  22. Liang, B., Zhan, Y., Wang, Y., Gu, E., Dai, D., Cai, J., & Hu, G. (2016). Effect of 24 cytochrome P450 2D6 variants found in the Chinese population on atomoxetine metabolism in vitro. Pharmacology, 97(1-2), 78–83.

    Article  CAS  PubMed  Google Scholar 

  23. Tiong, K. H., Yiap, B. C., Tan, E. L., Ismail, R., & Ong, C. E. (2010). Molecular cloning and functional analysis of cytochrome P450 2A6 (CYP2A6). Asia Pacific Journal of Molecular Biology and Biotechnology, 18, 351–357.

    Google Scholar 

  24. Pan, Y., Abd-Rashid, B. A., Ismail, Z., Ismail, R., Mak, J. W., & Ong, C. E. (2011). Heterologous expression of human cytochromes P450 2D6 and 3A4 in Escherichia coli and their functional characterization. Protein Journal, 30(8), 581–591.

    Article  CAS  PubMed  Google Scholar 

  25. Lau, P. S., Leong, K. V., Ong, C. E., Dong, A. N., & Pan, Y. (2017). In vitro functional characterisation of cytochrome P450 (CYP) 2C19 allelic variants CYP2C19*23 and CYP2C19*24. Biochemical Genetics, 55(1), 48–62.

    Article  CAS  PubMed  Google Scholar 

  26. Sandhu, P., Baba, T., & Guengerich, F. P. (1993). Expression of modified cytochrome P450 2C10 (2C9) in Escherichia coli, purification, and reconstitution of catalytic activity. Archives of Biochemistry and Biophysics, 306(2), 443–450.

    Article  CAS  PubMed  Google Scholar 

  27. Richardson, T. H., Jung, F., Griffin, K. J., Wester, M., Raucy, J. L., Kemper, B., Bornheim, L. M., Hassett, C., Omiecinski, C. J., & Johnson, E. F. (1995). A universal approach to the expression of human and rabbit cytochrome P450s of the 2C subfamily in Escherichia coli. Archives of Biochemistry and Biophysics, 323(1), 87–96.

    Article  CAS  PubMed  Google Scholar 

  28. Shen, A. L., Porter, T. D., Wilson, T. E., & Kasper, C. B. (1989). Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. Journal of Biological Chemistry, 264(13), 7584–7589.

    CAS  PubMed  Google Scholar 

  29. Boye, S. L., Kerdpin, O., Elliot, D. J., Miners, J. O., Kelly, L., McKinnon, R. A., Bhasker, C. R., Yoovathaworn, K., & Birkett, D. J. (2004). Optimizing bacterial expression of catalytically active human cytochromes P450: comparison of CYP2C8 and CYP2C9. Xenobiotica, 34(1), 49–60.

    Article  CAS  PubMed  Google Scholar 

  30. Pritchard, M. P., Glancey, M. J., Blake, J. A. R., Gilham, D. E., Burchell, B., Wolf, C. R., & Friedberg, T. (1998). Functional co-expression of CYP2D6 and human NADPH cytochrome P450 reductase in Escherichia coli. Pharmacogenetics, 8(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

  31. Omura, T., & Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes: 1. Evidence for its hemoprotein nature. Journal of Biological Chemistry, 239, 2370–2378.

    CAS  PubMed  Google Scholar 

  32. Phillips, A. H., & Langdon, R. G. (1962). Hepatic triphosphopyridine nucloetide-cytochrome c reductase: Isolation, characterization, and kinetic studies. Journal of Biological Chemistry, 237, 2652–2660.

    CAS  PubMed  Google Scholar 

  33. Masubuchi, Y., Igarashi, S., Suzuki, T., Horie, T., & Narimatsu, S. (1996). Imipramine-induced inactivation of a cytochrome P450 2D enzyme in rat liver microsomes: in relation to covalent binding of its reactive intermediate. Journal of Pharmacology and Experimental Therapeutics, 279(2), 724–731.

    CAS  PubMed  Google Scholar 

  34. Gillam, E. M., Baba, T., Kim, B.-R., Ohmori, S., & Guengerich, F. P. (1993). Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme. Archives of Biochemistry and Biophysics, 305(1), 123–131.

    Article  CAS  PubMed  Google Scholar 

  35. Blake, J. A., Pritchard, M., Ding, S., Smith, G., Burchell, B., Wolf, C. R., & Friedberg, T. (1996). Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli. FEBS Letters, 397(2-3), 210–214.

    Article  CAS  PubMed  Google Scholar 

  36. Crettol, S., Petrovic, N., & Murray, M. (2010). Pharmacogenetics of phase I and phase II drug metabolism. Current Pharmaceutical Design, 16(2), 204–219.

    Article  CAS  PubMed  Google Scholar 

  37. Ma, Q., & Lu, A. Y. H. (2011). Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacological Reviews, 63(2), 437–459.

    Article  CAS  PubMed  Google Scholar 

  38. Chaudhry, S. R., Muhammad, S., Eidens, M., Klemm, M., Khan, D., Efferth, T., & Weisshaar, M. P. (2014). Pharmacogenetics prediction of individual variability in drug response base on CYP2D6, CYP2C9 and CYP2C19 genetic polymorphism. Current Drug Metabolism, 15(7), 711–718.

    Article  CAS  PubMed  Google Scholar 

  39. Buzková, H., Pechandova, K., Slanar, O., & Perlík, F. (2006). Genetic polymorphism of cytochrome P450 and methods for its determination. Prague Medical Report, 107(4), 383–393.

    PubMed  Google Scholar 

  40. Yamazaki, H., Nakamura, M., Komatsu, T., Ohyama, K., Hatanaka, N., Asahi, S., Shimada, N., Guengerich, F. P., Shimada, T., Nakajima, M., & Yokoi, T. (2002). Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expression and Purification, 24(3), 329–337.

    Article  CAS  PubMed  Google Scholar 

  41. Zelasko, S., Palaria, A., & Das, A. (2013). Optimization to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression system. Protein Expression and Purification, 92(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

  42. Waterman, M. R., Jenkins, C. M., & Pikileva, I. (1995). Genetically engineered bacterial cells and applications. Toxicology Letters, 82, 807–813.

    Article  PubMed  Google Scholar 

  43. Guengerich, F. P., Martin, M. V., Guo, Z., & Chun, Y. J. (2009). Purification of functional recombinant P450s from bacteria. Methods in Enzymology, 272, 1245–1251.

    Google Scholar 

  44. Vermilion, J. L., & Coon, M. J. (1978). Purified liver microsomal NADPH-cytochrome P450 reductase: spectral characterization of oxidation-reduction states. Journal of Biological Chemistry, 253(8), 2694–2704.

    CAS  PubMed  Google Scholar 

  45. McGinnity, D. F., Griffin, S. J., Moody, G. C., Voice, M., Hanlon, S., Friedberg, T., & Riley, R. J. (1999). Rapid characterization of the major drug-metabolizing human hepatic cytochrome P450 enzyme expressed in Escherichia coli. Drug Metabolism and Disposition, 27(9), 1017–1023.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Monash University Malaysia (Monash Seed Grant under the Bioactive Compounds Research Strength), the Ministry of Science, Technology & Innovation (grant no. 02-02-10-SF0077), and the Ministry of Higher Education (grant no. FRGS/1/2014/SKK03/MUSM/02/1) for funding and supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Eng Ong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Fig. 1S

Representative reduced CO difference spectra showing expression of the (a) CYP2D6 wild type (CYP2D6*1) together with its alleles, and (b) CYP2C19 wild type (CYP2C19*1) with its alleles in E. coli membranes. (GIF 4009 kb)

High resolution image (TIFF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, A.N., Pan, Y., Palanisamy, U.D. et al. Site-Directed Mutagenesis of Cytochrome P450 2D6 and 2C19 Enzymes: Expression and Spectral Characterization of Naturally Occurring Allelic Variants. Appl Biochem Biotechnol 186, 132–144 (2018). https://doi.org/10.1007/s12010-018-2728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2728-0

Keywords

Navigation