Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 186–198 | Cite as

Structural Properties of Macrodontain I, a Cysteine Protease from Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)

  • María E. Errasti
  • Claudia L. Natalucci
  • Néstor O. Caffini
  • Alejandra E. Rotelli
  • Adriana Brullo
  • Bruno Maras
  • Sebastián A. Trejo
  • Laura M. I. López
Article
  • 71 Downloads

Abstract

The primary structure of macrodontain I, a peptidase from Pseudananas macrodontes fruits, was determined using Edman’s degradation. The enzyme is a non-glycosylated peptidase composed by 213 amino acids with a calculated molecular weight of 23,486.18 Da, pI value 6.99, and a molar extinction coefficient at 280 nm of 61,685 M−1 cm−1. The alignment of the sequence of macrodontain I with those cysteine peptidases from species belonging to the family Bromeliaceae showed the highest identity degree (87.74%) against fruit bromelain. A remarkable fact is that all these peptidase sequences show two Met contiguous residues (Met121 and 122) and the nonapeptide VPQSIDWRD located in the mature N-terminal region. Residues Cys26 and His159, which constitute the catalytic dyad in all cysteine peptidases, as well as active site residues Gln20 and Asn176, characteristic of Clan C1A, are conserved in macrodontain I. The 3-D model suggests that the enzyme belongs to the α + β class of proteins, with two disulfide bridges (Cys23-Cys63 and Cys57-Cys96) in the α domain, while the β domain is stabilized by another disulfide bridge (Cys153-Cys201). Further, we were able to establish that the cysteine peptidases from P. macrodontes are involved in the anti-inflammatory activity.

Keywords

Pseudananas macrodontes Bromeliaceae Amino acid sequence Anti-inflammatory activity Cysteine peptidase Plant endopeptidase Macrodontain I 

Abbreviations

CNBr

Cyanogen bromide

E64

trans-Epoxysuccinyl-l-leucylamido(4-guanidino)butane

HPLC

High-performance liquid chromatography

PVDF

Polyvinylidene fluoride

MALDI-TOF MS

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry

RP

Reversed phase

TFA

Trifluoroacetic acid

Notes

Acknowledgments

M.E. Errasti is a member of the CICPBA Researcher Career. S.A. Trejo and L.M.I. López are members of the CONICET Researcher Career. The present work was supported by grants from CONICET (PIP 297) and CICPBA.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interests.

Supplementary material

12010_2018_2725_MOESM1_ESM.doc (30 kb)
Table S1 (DOC 30 kb)
12010_2018_2725_MOESM2_ESM.docx (322 kb)
Table S2 (DOCX 322 kb)

References

  1. 1.
    Barrett, A. J., & Rawlings, N. D. (2001). Evolutionary lines of cysteine peptidases. Biological Chemistry, 382(5), 727–733.CrossRefGoogle Scholar
  2. 2.
    Rawlings, N. D., Barrett, A. J., & Finn, R. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 44(D1), D343–D350.CrossRefGoogle Scholar
  3. 3.
    van der Hoorn, R. A. L., & Jones, J. D. G. (2004). The plant proteolytic machinery and its role in defence. Current Opinion in Plant Biology, 7(4), 400–407.CrossRefGoogle Scholar
  4. 4.
    Mohamed Ahmed, I. A., Morishima, I., Babiker, E. E., & Mori, N. (2009). Dubiumin, a chymotrypsin-like serine protease from the seeds of Solanum dubium Fresen. Phytochemistry, 70(4), 483–491.CrossRefGoogle Scholar
  5. 5.
    Dhillon, A., Sharma, K., Rajulapati, V., & Goyal, A. (2017). Proteolytic enzymes. In A. Pandey, S. Negi, & C. R. Soccol (Eds.), Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products (pp. 149–165). Amsterdam: Elsevier.CrossRefGoogle Scholar
  6. 6.
    Salas, C. E., Gomes, M. T. R., Hernandez, M., & Lopes, M. T. P. (2008). Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry, 69(12), 2263–2269.CrossRefGoogle Scholar
  7. 7.
    de Lencastre Novaes, L. C., Jozala, A. F., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., & Pessoa Junior, A. (2016). Stability, purification, and applications of bromelain: a review. Biotechnology Progress, 32(1), 5–13.CrossRefGoogle Scholar
  8. 8.
    Errasti, M. E., Prospitti, A., Viana, C. A., Gonzalez, M. M., Ramos, M. V., Rotelli, A. E., & Caffini, N. O. (2016). Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagulation & Fibrinolysis, 27(4), 441–449.CrossRefGoogle Scholar
  9. 9.
    Venkatesha, S. H., Rajaiah, R., & Vishwanath, B. S. (2016). Hemostatic interference of plant latex proteases. SM. Journal of Clinical Pathology, 1, 1002–1009.Google Scholar
  10. 10.
    Maurer, H. R. (2001). Bromelain: biochemistry, pharmacology and medical use. Cellular and Molecular Life Sciences, 58(9), 1234–1245.CrossRefGoogle Scholar
  11. 11.
    Meiser, P., Xu, Z., Kirsch, G., & Jacob, C. (2014). Systemic enzyme therapy: fact or fiction? A review with focus on bromelains, proteolytic enzymes from the pineapple plant. In C. Jacob, G. Kirsch, A. Slusarenko, P. G. Winyard, & T. Burkholz (Eds.), Recent Advances in Redox Active Plant and Microbial Products (pp. 449–467). Springer.Google Scholar
  12. 12.
    Murachi, T. (1976). Bromelian enzymes. Meth Enzymol, 45, 475–485.CrossRefGoogle Scholar
  13. 13.
    Ota, S., Muta, E., Katahira, J., & Okamoto, Y. (1985). Reinvestigation of fractionation and some properties of the proteolytically active components of stem and fruit bromelains. Journal of Biochemistry, 98(1), 219–228.CrossRefGoogle Scholar
  14. 14.
    Napper, A. D., Bennett, S. P., Borowski, M., Holdridge, M. B., Leonard, M. J. C., Rogers, E. E., Duan, Y., Laursen, R. A., Reinhold, B., & Shames, S. L. (1994). Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. The Biochemical Journal, 301(3), 727–735.CrossRefGoogle Scholar
  15. 15.
    Rowan, A. D., & Buttle, D. J. (1994). Pineapple cysteine endopeptidases. Meth Enzymol, 244, 555–568.CrossRefGoogle Scholar
  16. 16.
    Lee, K., Albee, K., Bernasconi, R., & Edmunds, T. (1997). Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases. The Biochemical Journal, 327(1), 199–202.CrossRefGoogle Scholar
  17. 17.
    Raimbault, A. K., Zuily-Fodil, Y., & Soler, A. (Cruz de Carvalho, M.H. (2013). A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance. Journal of Plant Physiology, 170(17), 1536–1540.CrossRefGoogle Scholar
  18. 18.
    Toro-Goyco, E., Maretzki, A., & Matos, M. L. (1968). Isolation, purification and partial characterization of pinguinain, the proteolytic enzyme from Bromelia pinguin L. Archives of Biochemistry and Biophysics, 126(1), 91–104.CrossRefGoogle Scholar
  19. 19.
    Toro-Goyco, E., Rodríguez-Costas, I., & Ehrig, H. (1980). Structural studies on pinguinain. Changes induced by carboxamidomethylation. Biochimica et Biophysica Acta, 622(1), 151–159.CrossRefGoogle Scholar
  20. 20.
    Abreu Payrol, J., Obregón, W. D., Natalucci, C. L., & Caffini, N. O. (2005). Reinvestigation of the proteolytically active components of Bromelia pinguin fruit. Fitoterapia, 76(6), 540–548.CrossRefGoogle Scholar
  21. 21.
    Abreu Payrol, J., Obregón, W. D., Trejo, S. A., & Caffini, N. O. (2008). Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. The Protein Journal, 27(2), 88–96.CrossRefGoogle Scholar
  22. 22.
    Moreno-Hernández, J. M., Hernández-Mancillas, X. D., Navarrete, E. L. C., Mazorra-Manzano, M. Á., Osuna-Ruiz, I., Rodríguez-Tirado, V. A., & Salazar-Leyva, J. A. (2017). Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. fruit grown in Mexico. Applied Biochemistry and Biotechnology, 182(1), 181–196.CrossRefGoogle Scholar
  23. 23.
    Montes, C., Amador, M., Cuevas, D., & Córdoba, F. (1990). Subunit structure of karatasin, the proteinase isolated from Bromelia plumieri (karatas). Agricultural Biological Chemistry, 54(1), 17–24.CrossRefGoogle Scholar
  24. 24.
    Pardo, M. F., López, L. M. I., Canals, F., Avilés, F. X., Natalucci, C. L., & Caffini, N. O. (2000). Purification of balansain I, an endopeptidase from unripe fruits of Bromelia balansae Mez (Bromeliaceae). Journal of Agricultural and Food Chemistry, 48(9), 3795–3800.CrossRefGoogle Scholar
  25. 25.
    Pardo, M. F., López, L. M. I., Caffini, N. O., & Natalucci, C. L. (2001). Properties of a milk clotting protease isolated from fruits of Bromelia balansae Mez. Biological Chemistry, 382(5), 871–874.CrossRefGoogle Scholar
  26. 26.
    Ochoa, N., Agundis, C., & Córdoba, F. (1987). Isolation and partial characterization of Bromelia hemisphaerica protease by affinity chromatography. Preparative Biochemistry, 17(4), 337–347.CrossRefGoogle Scholar
  27. 27.
    Bruno, M. A., Trejo, S. A., Avilés, X. F., Caffini, N. O., & López, L. M. I. (2006). Isolation and characterization of Hieronymain II, another peptidase isolated from fruits of Bromelia hieronymi Mez. The Protein Journal, 25(3), 224–231.CrossRefGoogle Scholar
  28. 28.
    Bruno, M. A., Trejo, S. A., Caffini, N. O., & López, L. M. I. (2008). Purification and characterization of Hieronymain III. Comparison with other proteases previously isolated from Bromelia hieronymi Mez. The Protein Journal, 27(7-8), 426–433.CrossRefGoogle Scholar
  29. 29.
    Bruno, M. A., Trejo, S. A., Avilés, F. X., & Caffini, N. O. (López, L.M.I. (2011). Cloning, sequencing, and identification using proteomic tools of a protease from Bromelia hieronymi Mez. Applied Biochemistry and Biotechnology, 165(2), 583–593.CrossRefGoogle Scholar
  30. 30.
    Cabral, H., Leopoldino, A. M., Tajara, E. H., Greene, L. J., Faca, V. M., Mateus, R. P., Ceron, C. R., de Souza Judice, W. A., Juliano, L., & Bonilla-Rodriguez, G. O. (2006). Preliminary functional characterization, cloning and primary sequence of fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa. Protein Peptide Lett, 13(1), 83–89.CrossRefGoogle Scholar
  31. 31.
    Vallés, D., Furtado, S., Cantera,.M.B. (2007). Characterization of new proteolytic enzymes from ripe fruits of Bromelia antiacantha Bertol. (Bromeliaceae). Enzyme Microb Tech, 40, 409–413, 3.Google Scholar
  32. 32.
    López, L. M. I., Sequeiros, C., Natalucci, C. L., Brullo, A., Maras, B., Barra, D., & Caffini, N. O. (2000). Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Express Purif, 18(2), 133–140.CrossRefGoogle Scholar
  33. 33.
    López, L. M. I., Sequeiros, C., Trejo, S. A., Pardo, M. F., Caffini, N. O., & Natalucci, C. L. (2001). Comparison of two cysteine endopeptidases from Pseudananas macrodontes (Morr.) harms (Bromeliaceae). BiolChem, 382, 875–878.CrossRefGoogle Scholar
  34. 34.
    Errasti, M. E., Caffini, N. O., Pelzer, L. E., & Rotelli, A. E. (2013). Evaluation of anti-inflammatory activity of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae) fruit extract in rats. Zeitschrift für Naturforschung. Section C, 68, 445–452.CrossRefGoogle Scholar
  35. 35.
    Wittmann-Liebold, B. (1997). Automated microsequencing: introduction and overview. In R. M. Kamp, T. Choli-Papadopoulou, & B. Whittmann-Liebold (Eds.), Protein structure analysis (pp. 107–136). Berlin: Springer.CrossRefGoogle Scholar
  36. 36.
    Hawkes, R. (1982). Identification of concanavalin A-binding proteins after sodium dodecyl sulfate-gel electrophoresis and protein blotting. Analytical Biochemistry, 123(1), 143–146.CrossRefGoogle Scholar
  37. 37.
    Muta, E., Okamoto, Y., Ota, S. (1997). Cloning and sequencing of cysteine proteinases in Ananas comosus. EMBL/GenBank/DDBJ databases, 1997. http://www.expasy.ch/cgi-bin/niceprot.pl?O24641.
  38. 38.
    Cohen, L. W., Coghlan, V. M., & Dihel, L. C. (1986). Cloning and sequencing of papain-encoding cDNA. Gene, 48(2-3), 219–227.CrossRefGoogle Scholar
  39. 39.
    Ritonja, A., Rowan, A. D., Buttle, D. J., Rawlings, N. D., Turk, V., & Barrett, A. J. (1989). Stem bromelain: amino acid sequence and implications for weak binding of cystatin. FEBS Letters, 247(2), 419–424.CrossRefGoogle Scholar
  40. 40.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.CrossRefGoogle Scholar
  41. 41.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  42. 42.
    Meier, R., Schuler, W., & De Saulles, P. (1950). Zur Frage desmechanismus des hemming des Bindrgewehswachstums durch corticone. Experimentia, 6(12), 469–471.CrossRefGoogle Scholar
  43. 43.
    Barrett, A. J., & Rawlings, N. D. (2004). Introduction: the clans and families of cysteine peptidases. In A. J. Barrett, N. D. Rawlings, & J. F. Woessner (Eds.), Handbook of proteolytic enzymes (2nd ed., pp. 1051–1071). London: Elsevier Academic Press.Google Scholar
  44. 44.
    Errasti, M. E., Caffini, N. O., Pelzer, L. E., & Rotelli, A. E. (2013). Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain. Planta Medica, 79(3-4), 207–213.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • María E. Errasti
    • 1
  • Claudia L. Natalucci
    • 2
  • Néstor O. Caffini
    • 2
  • Alejandra E. Rotelli
    • 3
  • Adriana Brullo
    • 4
  • Bruno Maras
    • 4
  • Sebastián A. Trejo
    • 5
  • Laura M. I. López
    • 1
  1. 1.CITEC, INTI-CICPBABuenos AiresArgentina
  2. 2.CIPROVEUNLP- CICPBABuenos AiresArgentina
  3. 3.Laboratory of Pharmacology, Faculty of Chemistry, Biochemistry and PharmacyNational University of San LuisSan LuisArgentina
  4. 4.Dipartimento di Scienze Biochimiche, Facoltà di MedicinaUniversità La SapienzaRomeItaly
  5. 5.Laboratorio de Neurofisiología del Instituto Multidisciplinar de Biología Celular (IMBICE)Buenos AiresArgentina

Personalised recommendations