Skip to main content
Log in

Co-addition Strategy for Enhancement of Chaetominine from Submerged Fermentation of Aspergillus fumigatus CY018

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chaetominine (CHA), a novel framework tripeptide alkaloid, imparts an attractive cytotoxic against the human leukemia cell line K562, which is produced by Aspergillus fumigatus CY018. However, its pharmacological research is restricted by low yields in submerged culture, which needs to be resolved immediately by biotechnology. In this work, a co-addition strategy was applied to promote CHA production based on related inhibitors’ addition and precursors’ addition, inspired by the biosynthetic pathway analysis of CHA. CHA production reached 53.87 mg/L by addition of 10 mM shikimate, 10 mM anthranilate, 20 mM tryptophan, and 10 mM alanine in shake flask. Compared to the control without addition of precursors, the activity of 3-deoxy-arabino-heptulosonate-7-phospahte (DAHP) synthase was significantly improved and the transcription levels of critical genes in shikimate pathway were up-regulated responded to the co-addition of precursors. The improvement of CHA production by co-addition of precursors was also successfully reproduced in the lab-scale bioreactor (5-L) system, in which CHA production reached 46.10 mg/L. This work demonstrated that precursors’ co-addition was an effective strategy for increasing CHA production, and the information obtained might be useful to the further improvement of CHA on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, J. Y., Song, Y. C., Zhang, Z., Wang, L., Guo, Z. J., Zou, W. X., & Tan, R. X. (2004). Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. Journal of Biotechnology, 114(3), 279–287.

    Article  CAS  PubMed  Google Scholar 

  2. Jiao, R. H., Xu, S., Liu, J. Y., Ge, H. M., Ding, H., Xu, C., Zhu, H. L., & Tan, R. X. (2006). Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015. Organic Letters., 8(25), 5709–5712.

    Article  CAS  PubMed  Google Scholar 

  3. Yao, J. Y., Jiao, R. H., Liu, C. Q., Zhang, Y. P., Yu, W. G., Lu, Y. H., & Tan, R. X. (2016). Assessment of the cytotoxic and apoptotic effects of chaetominine in a human leukemia cell line. Biomolecules & Therapeutics, 24(2), 147–155.

    Article  CAS  Google Scholar 

  4. Gui, R. Y., Xu, L., Kuang, Y., Chung, L. M., Qin, J. C., Liu, L., Yang, S. X., & Zhao, L. C. (2015). Chaetominine, (+)-alantrypinone, questin, isorhodoptilometrin, and 4-hydroxybenzaldehyde produced by the endophytic fungus Aspergillus sp. YL-6 inhibit wheat (Triticum aestivum) and radish (Raphanus sativus) germination. Journal of Plant Interactions, 10, 87–92.

    Article  CAS  Google Scholar 

  5. Toumi, M., Couty, F., Marrot, J., & Evano, G. (2008). Total synthesis of chaetominine. Organic Letters, 10(21), 5027–5030.

    Article  CAS  PubMed  Google Scholar 

  6. Kshirsagar, U. A. (2015). Recent developments in the chemistry of quinazolinone alkaloids. Organic & Biomolecular Chemistry, 13(36), 9336–9352.

    Article  CAS  Google Scholar 

  7. Elfie, S. W. (2008). Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Natural Product Reports, 25, 188–200.

    Article  Google Scholar 

  8. Kang, Z., Zhang, C. Z., Du, G. C., & Chen, J. (2014). Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Applied Biochemistry and Biotechnology, 172(4), 2012–2021.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, S. P., Xiao, M. R., Zhang, L., Xu, J., Ding, Z. Y., Gu, Z. H., & Shi, G. Y. (2013). Production of l-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochemistry, 48(3), 413–419.

    Article  CAS  Google Scholar 

  10. Song, E. S., Park, Y. J., Noh, T. H., Kim, Y. T., Kim, J. G., Cho, H., & Lee, B. M. (2012). Functional analysis of the aroC gene encoding chorismate synthase from Xanthomonas oryzae pathovar oryzae. Microbiological Research, 167(6), 326–331.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, P. M., Choera, T., Wiemann, P., Pisithkul, T., Noguez, D. A., & Keller, N. P. (2016). TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genetics and Biology., 89, 102–113.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, S. H., Baek, K., Lee, J. E., & Kim, B. G. (2016). Using tyrosinase as a monophenol monooxygenase: a combined strategy for effective inhibition of melanin formation. Biotechnology and Bioengineering, 113(4), 735–743.

    Article  CAS  PubMed  Google Scholar 

  13. Mao, X. Z., Wang, F., Zhang, J. G., Chen, S., Deng, Z. X., Shen, Y. L., & Wei, D. Z. (2009). The pH shift and precursor feeding strategy in a low-toxicity FR-008/Candicidin derivative CS103 fermentation bioprocess by a mutant of Streptomyces sp. FR-008. Applied Biochemistry and Biotechnology, 159(3), 673–686.

    Article  CAS  PubMed  Google Scholar 

  14. Han, Y. S., Heijden, R. V. D., & Verpoorte, R. (2002). Improved anthraquinone accumulation in cell cultures of Cinchona ‘Robusta’ by feeding of biosynthetic precursors and inhibitors. Biotechnology Letters, 24(9), 705–710.

    Article  CAS  Google Scholar 

  15. Liu, C. Q., Jiao, R. H., Yao, L. Y., Zhang, Y. P., Lu, Y. H., & Tan, R. X. (2016). Adsorption characteristics and preparative separation of chaetominine from Aspergillus fumigatus mycelia by macroporousresin. Journal of Chromatography B., 1015, 135–141.

    Article  CAS  Google Scholar 

  16. Mori, T., Sakurai, M., & Sakuta, M. (2001). Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, 160(2), 355–360.

    Article  CAS  PubMed  Google Scholar 

  17. Li, S. B., Liu, L. M., & Chen, J. (2015). Mitochondrial fusion and fission are involved in stress tolerance of Candida glabrata. Bioresoures and Bioprocessing, 2, 12–20.

    Article  Google Scholar 

  18. Le, T. C., Yang, I., Yoon, Y. J., Nam, S. J., & Fenical, W. (2016). Ansalactams B−D illustrate further biosynthetic plasticity within the ansamycin pathway. Organic Letters, 18(9), 2256–2259.

    Article  CAS  PubMed  Google Scholar 

  19. Singh, S. K., & Pandey, A. (2013). Emerging approaches in fermentative production of statins. Applied Biochemistry and Biotechnology, 171(4), 927–938.

    Article  CAS  PubMed  Google Scholar 

  20. Buhaescu, I., & Izzedine, H. (2007). Mevalonate pathway: a review of clinical and therapeutical implications. Clinical Biochemistry, 40(9-10), 575–584.

    Article  CAS  PubMed  Google Scholar 

  21. Sun, X. Q., Zhou, X. S., Cai, M. H., Tao, K. J., & Zhang, Y. X. (2009). Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresource Technology, 100(18), 4244–4251.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, K., Li, H. D., Chen, W. X., Zhao, M. L., Cui, H. Y., Min, Q. S., Wang, H. J., Chen, S. L., & Li, D. M. (2017). Regulation of the docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium limacinum B4D1. Applied Biochemistry and Biotechnology, 182(1), 67–81.

    Article  CAS  PubMed  Google Scholar 

  23. Eckermann, C., Matthes, B., Nimtz, M., Reiser, V., Lederer, B., Boger, P., & Schroder, J. (2003). Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases. Phytochemistry, 64(6), 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  24. Leonard, E., Yan, Y. J., Fowler, Z. L., Li, Z., Lim, C. G., Lim, K. H., & Koffas, M. A. G. (2008). Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular Pharmaceutics, 5(2), 257–265.

    Article  CAS  PubMed  Google Scholar 

  25. Niu, C. P., Cai, M. H., Zhang, Y. X., & Zhou, X. S. (2012). Biosynthetic origin of the carbon skeleton of a novel anti-tumor compound, haloroquinone, from a marine-derived fungus, Halorosellinia sp. Biotechnology Letters, 34(11), 2119–2124.

    Article  CAS  PubMed  Google Scholar 

  26. Iddar, A., Valverde, F., Serrano, A., & Soukri, A. (2003). Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Molecular and Cellular Biochemistry, 247, 195–203.

    Article  CAS  PubMed  Google Scholar 

  27. Knaggs, A. R. (2003). The biosynthesis of shikimate metabolites. Natural Product Reports, 20(1), 119–136.

    Article  CAS  PubMed  Google Scholar 

  28. Maeda, H., & Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant and Biology., 63(1), 73–105.

    Article  CAS  Google Scholar 

  29. Kramer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M., & Raeven, L. (2003). Metabolic engineering for microbial production of shikimic acid. Metabolic Engineering, 5(4), 277–283.

    Article  CAS  PubMed  Google Scholar 

  30. Hertweck, C. (2009). The biosynthetic logic of polyketide diversity. Angewandte Chemie-International Edition., 48(26), 4688–4716.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, M. J., Fan, Y. X., Wei, L. J., Hu, F. X., & Hua, Q. (2017). Effects of the methylmalonyl-CoA metabolic pathway on ansamitocin production in Actinosynnema pretiosum. Applied Biochemistry and Biotechnology, 181(3), 1167–1178.

    Article  CAS  PubMed  Google Scholar 

  32. Yolande, A. C., Angela, M. P., Brian, M. K., & Michael, G. T. (2009). Biosynthesis of polyketide synthase extender units. Natural Product Reports, 26, 90–114.

    Article  Google Scholar 

  33. Verma, P., Khan, S. A., Mathur, A. K., Ghosh, S., Shanker, K., & Kalra, A. (2014). Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma, 251(6), 1359–1371.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, J., & Verpoorte, R. (2007). Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochemistry Reviews, 6(2-3), 435–457.

    Article  CAS  Google Scholar 

  35. Chamlagain, B., Deptula, P., Edelmann, M., Kariluoto, S., Grattepanche, F., Lacroix, C., Varmanen, P., & Piironen, V. (2016). Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. LWT-Food Science and Technology, 72, 117–124.

    Article  CAS  Google Scholar 

  36. Sun, X. Q., Zhou, X. S., Cai, M. H., Zhou, J. S., & Zhang, Y. X. (2010). Significant stimulation of o-phthalic acid in biosynthesis of aspergiolide A by a marine fungus Aspergillus glaucus. Bioresource Technology, 101(10), 3609–3616.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, Z. J., Zou, C., Zhu, Y. X., Dai, J., Chen, S., Wu, D., Wu, J., & Chen, J. (2011). Development of L-tryptophan production strains by defined genetic modification in Escherichia coli. Journal of Industrial Microbiology & Biotechnology., 38(12), 1921–1929.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81741156), the Shanghai Sailing Program (17YF1403700), and the National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hua Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CQ., Pan, ZH., An, FL. et al. Co-addition Strategy for Enhancement of Chaetominine from Submerged Fermentation of Aspergillus fumigatus CY018. Appl Biochem Biotechnol 186, 384–399 (2018). https://doi.org/10.1007/s12010-018-2714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2714-6

Keywords

Navigation